[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Cumulative Capacitated Vehicle Routing Problem Including Priority Indexes

  • Chapter
  • First Online:
Green Transportation and New Advances in Vehicle Routing Problems

Abstract

This chapter studies the Cumulative Capacitated Vehicle Routing Problem including Priority Indexes, a variant of the classical Capacitated Vehicle Routing Problem, which serves the customers according to a certain level of preference. This problem can be effectively implemented in commercial and public environments where green concerns are incorporated, (like the reduction of CO2 emission and energy consumption), and waste collection systems. For this problem, we aim to minimize two objectives: the total latency and the total tardiness of the system. A Mixed-Integer formulation is developed and solved using the AUGMECON approach to obtain true efficient Pareto fronts. However, as expected, the use of commercial software was able to solve only small instances, up to 15 customers. Therefore two metaheuristics were developed to solve the problem, one based on the Non-dominated Sorting Genetic Algorithm (NSGA) and the other based on Particle Swarm Optimization (PSO). These algorithms were used to solve the small instances where True Efficient Fronts were available. Both algorithms provided good solutions, although the NSGA algorithm obtained a better and denser Pareto front. Later, both algorithms were used to solve larger instances with 20–100 customers. The results were mixed in terms of quality, but the PSO algorithm performed faster. The instances solved were modified from benchmarks available in the literature. However, we are convinced that the model and algorithms proposed can be useful to solve a wide variety of situations where economic, environmental, and social concerns are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 111.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 139.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 139.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Srivastava, S.K.: Int. J. Manag. Rev. 9, 53–80 (2007). https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-2370.2007.00202.x

    Article  Google Scholar 

  2. Engin, B.E., Martens, M., Paksoy, T.: Lean and Green Supply Chain Management: A Comprehensive Review, pp. 1–38. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-319-97511-5_1

  3. Ngueveu, S.U., Prins, C., Calvo, R.W.: Comput. Oper. Res. 37, 1877–1885 (2010)

    Article  MathSciNet  Google Scholar 

  4. Martínez-Salazar, I., Angel-Bello, F., Alvarez, A.: J. Oper. Res. Society 66, 1312–1323 (2015)

    Article  Google Scholar 

  5. Rivera, J.C., Afsar, H.M., Prins, C.: Comput. Optim. Appl. 61, 159–187 (2015)

    Article  MathSciNet  Google Scholar 

  6. Gaur, D.R., Mudgal, A., Singh, R.R.: Improved approximation algorithms for cumulative VRP with stochastic demands. Discret. Appl. Math. 280, 133–143 (2020). https://doi.org/10.1016/j.dam.2018.01.012

    Article  MathSciNet  MATH  Google Scholar 

  7. Lalla-Ruiz, E., Voß, S.: Optim. Lett. 1–21 (2019)

    Google Scholar 

  8. Kara, İ., Kara, B.Y., Kadri Yetiş, M.: Vehicle Routing Problem. IntechOpen, London (2008)

    MATH  Google Scholar 

  9. Rivera, J.C., Afsar, H.M., Prins, C.: Eur. J. Oper. Res. 249, 93–104 (2016)

    Article  Google Scholar 

  10. Nucamendi-Guillén, S., Angel-Bello, F., Martínez-Salazar, I., Cordero-Franco, A.E.: Expert Syst. Appl. 113, 315–327 (2018)

    Article  Google Scholar 

  11. Lysgaard, J., Wøhlk, S.: Eur. J. Oper. Res. 236, 800–810 (2014)

    Article  Google Scholar 

  12. Ribeiro, G.M., Laporte, G.: Comput. Oper. Res. 39, 728–735 (2012)

    Article  MathSciNet  Google Scholar 

  13. Ozsoydan, F.B., Sipahioglu, A.: Optimization 62, 1321–1340 (2013)

    Article  MathSciNet  Google Scholar 

  14. Ke, L., Feng, Z.: Comput. Oper. Res. 40, 633–638 (2013)

    Article  Google Scholar 

  15. Lin, C., Choy, K., Ho, G., Chung, S., Lam, H.: Expert Syst. Appl. 41, 1118–1138 (2014). http://www.sciencedirect.com/science/article/pii/S095741741300609X

    Article  Google Scholar 

  16. Karagul, K., Sahin, Y., Aydemir, E., Oral, A.: A Simulated Annealing Algorithm Based Solution Method for a Green Vehicle Routing Problem with Fuel Consumption, pp. 161–187. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-319-97511-5_6

  17. Kara, İ., Kara, B.Y., Yetis, M.K. In: Dress, A., Xu, Y., Zhu, B. (eds.) Combinatorial Optimization and Applications, pp. 62–71. Springer, Berlin (2007)

    Google Scholar 

  18. Palmer, A.: School of Management. Cranfield University, Cranfield (2007)

    Google Scholar 

  19. Sbihi, A., Eglese, R.W.: 4OR 5, 99–116 (2007). https://doi.org/10.1007/s10288-007-0047-3

  20. Kuo, Y.: Comput. Ind. Eng. 59, 157–165 (2010). http://www.sciencedirect.com/science/article/pii/S0360835210000835

    Article  Google Scholar 

  21. Maden, W., Eglese, R., Black, D.: J. Oper. Res. Society 61, 515–522 (2010). https://doi.org/10.1057/jors.2009.116

    Article  Google Scholar 

  22. Figliozzi, M.: Transport. Res. Record 2197, 1–7 (2010). https://doi.org/10.3141/2197-01

    Article  Google Scholar 

  23. Urquhart, N., Scott, C., Hart, E. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Ebner, M., Farooq, M., Fink, A., Grahl, J., Greenfield, G., Machado, P., O’Neill, M., Tarantino, E., Urquhart, N. (eds.) Applications of Evolutionary Computation, pp. 421–430. Springer, Berlin (2010)

    Google Scholar 

  24. Bektaş, T., Laporte, G.: Transp. Res. B Methodol. 45, 1232–1250 (2011). Supply chain disruption and risk management. http://www.sciencedirect.com/science/article/pii/S019126151100018X

  25. Faulin, J., Juan, A., Lera, F., Grasman, S.: Procedia - Social and Behavioral Sciences 20, 323–334 (2011). The State of the Art in the European Quantitative Oriented Transportation and Logistics Research — 14th Euro Working Group on Transportation & 26th Mini Euro Conference & 1st European Scientific Conference on Air Transport. http://www.sciencedirect.com/science/article/pii/S1877042811014182

  26. Ubeda, S., Arcelus, F., Faulin, J.: Int. J. Prod. Eco. 131, 44–51 (2011). Innsbruck 2008. http://www.sciencedirect.com/science/article/pii/S092552731000174X

  27. Suzuki, Y.: Transp. Res. Part D: Transp. Environ. 16, 73–77 (2011). http://www.sciencedirect.com/science/article/pii/S1361920910001239

    Article  Google Scholar 

  28. Demir, E., Bektaş, T., Laporte, G.: Eur. J. Oper. Res. 223, 346–359 (2012). http://www.sciencedirect.com/science/article/pii/S0377221712004997

    Article  Google Scholar 

  29. Jemai, J., Zekri, M., Mellouli, K. In: Hao, J.-K., Middendorf, M. (eds.) Evolutionary Computation in Combinatorial Optimization, pp. 37–48. Springer, Berlin (2012)

    Google Scholar 

  30. Erdoğan, S., Miller-Hooks, E.: Transport Res E-Log 48, 100–114 (2012). Select Papers from the 19th International Symposium on Transportation and Traffic Theory. http://www.sciencedirect.com/science/article/pii/S1366554511001062

  31. Xiao, Y., Zhao, Q., Kaku, I., Xu, Y.: Comput. Oper. Res. 39, 1419–1431 (2012). http://www.sciencedirect.com/science/article/pii/S0305054811002450

    Article  MathSciNet  Google Scholar 

  32. Huang, Y., Shi, C., Zhao, L., Woensel, T.V. (eds.) Proceedings of 2012 IEEE International Conference on Service Operations and Logistics, and Informatics, pp. 302–307. https://doi.org/10.1109/SOLI.2012.6273551

  33. Ramos, T.R.P., Gomes, M.I., Barbosa-Póvoa, A.P.: Minimizing CO2 emissions in a recyclable waste collection system with multiple depots. In: 2012 EUROMA/POMS joint conference pp. 1-5

    Google Scholar 

  34. Omidvar, A., Tavakkoli-Moghaddam, R.: Sustainable vehicle routing: strategies for congestion management and refueling scheduling, pp. 1089–1094. IEEE, Piscataway (2012). https://doi.org/10.1109/EnergyCon.2012.6347732

  35. Li, J.: J. Comput. 7, 3020–3027 (2012). https://doi.org/10.4304/jcp.7.12.3020-3027

    Google Scholar 

  36. Jabali, O., Van Woensel, T., de Kok, T.: Prod. Oper. Manag. 21, 1060–1074 (2012). https://doi.org/10.1111/j.1937-5956.2012.01338.x

    Article  Google Scholar 

  37. Franceschetti, A., Honhon, D., Woensel, T.V., Bektaş, T., Laporte, G.: Transp. Res. B Methodol. 56, 265–293 (2013). http://www.sciencedirect.com/science/article/pii/S0191261513001446

    Article  Google Scholar 

  38. Peiying, Y., Jiafu, T., Yu, Y.: Based on Low Carbon Emissions Cost Model and Algorithm for Vehicle Routing and Scheduling in Picking Up and Delivering Customers to Airport Service, pp. 1693–1697. IEEE, Piscataway (2013). https://doi.org/10.1109/CCDC.2013.6561203

  39. Kwon, Y.-J., Choi, Y.-J., Lee, D.-H.: Transp. Res. Part D: Transp. Environ. 23, 81–89 (2013). http://www.sciencedirect.com/science/article/pii/S1361920913000643

    Article  Google Scholar 

  40. Yasin, M., Yu, V.F. In: Lin, Y.-K., Tsao, Y.-C., Lin, S.-W. (eds.) Proceedings of the Institute of Industrial Engineers Asian Conference 2013, pp. 1261–1269. Springer, Singapore (2013)

    Google Scholar 

  41. Küçükoğlu, I., Ene, S., Aksoy, A., Ŏztürk, N.: Int. J. Comput. Eng. Res. 3, 16–23 (2013)

    Google Scholar 

  42. Pradenas, L., Oportus, B., Parada, V.: Expert Syst. Appl. 40, 2985–2991 (2013). http://www.sciencedirect.com/science/article/pii/S0957417412012559

    Article  Google Scholar 

  43. Kopfer, H.W., Schönberger, J., Kopfer, H.: Flex. Serv. Manuf. J. 26, 221–248 (2014). https://doi.org/10.1007/s10696-013-9180-9

    Article  Google Scholar 

  44. Treitl, S., Nolz, P.C., Jammernegg, W.: Flex. Serv. Manuf. J. 26, 143–169 (2014). https://doi.org/10.1007/s10696-012-9158-z

    Article  Google Scholar 

  45. Úbeda, S., Faulin, J., Serrano, A., Arcelus, F.J.: Lecture Notes Manag. Sci. 6, 141–149 (2014)

    Google Scholar 

  46. Taha, M., Fors, N., Shoukry, A. (2014)

    Google Scholar 

  47. Ayadi, R., ElIdrissi, A.E., Benadada, Y., El Hilali Alaoui, A. In: 2014 International Conference on Logistics Operations Management, pp. 148–154. https://doi.org/10.1109/GOL.2014.6887432

  48. Adiba, E.E., Aahmed, E.A., Youssef, B.: In: 2014 International Conference on Logistics Operations Management, pp. 161–167. https://doi.org/10.1109/GOL.2014.6887434

  49. Montoya, A., Guéret, C., Mendoza, J.E., Villegas, J.G.: Transp. Res. C: Emerg. Technol. 70, 113–128 (2016). http://www.sciencedirect.com/science/article/pii/S0968090X15003320

    Article  Google Scholar 

  50. Ene, S., Küçükoğlu;, I., Aksoy, A., Ŏztürk, N.: Int. J. Veh. Desig. 71, 75–102 (2016). https://www.inderscienceonline.com/doi/abs/10.1504/IJVD.2016.078771

  51. ÇağrıKoç, Karaoglan, I.: Appl. Soft Comput. 39, 154–164 (2016). http://www.sciencedirect.com/science/article/pii/S1568494615007085

  52. Afshar-Bakeshloo, M., Mehrabi, A., Safari, H., Maleki, M., Jolai, F.: J. Ind. Eng. Int. 12, 529–544 (2016). https://doi.org/10.1007/s40092-016-0163-9

    Article  Google Scholar 

  53. Arango Gonzalez, D.S., Olivares-Benitez, E., Miranda, P.A.: Adv. Oper. Res. 2017, 11 (2017). https://doi.org/10.1016/10.1155/2017/4093689

    Google Scholar 

  54. Andelmin, J., Bartolini, E.: Trans. Sci. 51, 1288–1303 (2017) . https://doi.org/10.1287/trsc.2016.0734

    Article  Google Scholar 

  55. Andelmin, J., Bartolini, E.: Comput. Oper. Res. 109, 43–63 (2019). http://www.sciencedirect.com/science/article/pii/S0305054819301017

    Article  MathSciNet  Google Scholar 

  56. Yu, V.F., Redi, A.P., Hidayat, Y.A., Wibowo, O.J.: Appl. Soft Comput. 53, 119–132 (2017) . http://www.sciencedirect.com/science/article/pii/S1568494616306524

    Article  Google Scholar 

  57. Cooray, P.L.N.U., Rupasinghe, T.: J. Ind. Eng. 2017, 1–13 (2017). https://doi.org/10.1155/2017/3019523

    Google Scholar 

  58. Sawik, B., Faulin, J., Perez-Bernabeu, E.: Transport. Res. Proc. 22, 305–313 (2017). https://doi.org/10.1016/j.trpro.2017.03.037

    Article  Google Scholar 

  59. Toro, E.M., Franco, J.F., Echeverri, M.G., aes, F.G.G.: Comput. Ind. Eng. 110, 114–125 (2017). http://www.sciencedirect.com/science/article/pii/S0360835217302176

  60. Toro, E., Franco, J., Granada-Echeverri, M., Guimarães, F., Gallego Rendón, R.A.: Int. J. Ind. Eng. Comput. 8, 203–216 (2016). https://doi.org/10.5267/j.ijiec.2016.10.001

    Google Scholar 

  61. Hamid Mirmohammadi, S., Babaee Tirkolaee, E., Goli, A., Dehnavi-Arani, S.: Iran Univ. Sci. Technol. 7, 143–156 (2016)

    Google Scholar 

  62. de Oliveira da Costa, P.R., Mauceri, S., Carroll, P., Pallonetto, F.: Electron Notes Discrete Math. 64, 65–74 (2018). 8th International Network Optimization Conference – INOC 2017. http://www.sciencedirect.com/science/article/pii/S1571065318300088

  63. Tirkolaee, E.B., Hosseinabadi, A.A.R., Soltani, M., Sangaiah, A.K., Wang, J.: Sustainability 10, 1–21 (2018). https://ideas.repec.org/a/gam/jsusta/v10y2018i5p1366-d143612.html

    Article  Google Scholar 

  64. Macrina, G., Pugliese, L.D.P., Guerriero, F., Laporte, G.: Comput. Oper. Res. 101, 183–199 (2019). http://www.sciencedirect.com/science/article/pii/S0305054818301965

    Article  MathSciNet  Google Scholar 

  65. Wang, L., Lu, J.: IEEE/CAA J. Automat. Sin. 6, 516–526 (2019). https://doi.org/10.1109/JAS.2019.1911405

    Article  Google Scholar 

  66. Li, Y., Soleimani, H., Zohal, M.: J. Clean. Prod. 227, 1161–1172 (2019). http://www.sciencedirect.com/science/article/pii/S0959652619308790

    Article  Google Scholar 

  67. Yu, Y., Wang, S., Wang, J., Huang, M.: Transport. Res. B: Methodol. 122, 511–527 (2019). http://www.sciencedirect.com/science/article/pii/S0191261518308944

    Article  Google Scholar 

  68. Dukkanci, O., Kara, B.Y., Bektaş, T.: Comput. Oper. Res. 105, 187–202 (2019). http://www.sciencedirect.com/science/article/pii/S0305054819300218

    Article  MathSciNet  Google Scholar 

  69. Angel-Bello, F., Alvarez, A., García, I.: Appl. Math. Model. 37, 2257–2266 (2013). http://www.sciencedirect.com/science/article/pii/S0307904X12003459

    Article  MathSciNet  Google Scholar 

  70. Mavrotas, G.: Appl. Math. Comput. 213, 455–465 (2009) . http://www.sciencedirect.com/science/article/pii/S0096300309002574

    MathSciNet  Google Scholar 

  71. Holland, J.H. et al.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge (1992)

    Book  Google Scholar 

  72. Prins, C.: Comput. Oper. Res. 31, 1985–2002 (2004)

    Article  MathSciNet  Google Scholar 

  73. Srinivas, N., Deb, K.: Evol. Comput. 2, 221–248 (1994). https://doi.org/10.1162/evco.1994.2.3.221

    Article  Google Scholar 

  74. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  75. Martínez-Salazar, I.A., Molina, J., Ángel-Bello, F., Gómez, T., Caballero, R.: Eur. J. Oper. Res. 234, 25–36 (2014)

    Article  Google Scholar 

  76. Kennedy, J., Eberhart, R. In: Proceedings of ICNN’95 – International Conference on Neural Networks, vol. 4, pp. 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  77. Chen, R.-M., Shen, Y.-M., Hong, W.-Z.: Exp. Syst. Appl. 138, 112833 (2019). http://www.sciencedirect.com/science/article/pii/S0957417419305354

    Article  Google Scholar 

  78. Li, X., Clerc, M.: Swarm Intelligence, pp. 353–384. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-319-91086-4_11

  79. Talbi, E.-G.: Metaheuristics: From Design to Implementation, vol. 74. John Wiley & Sons, Hoboken (2009)

    Book  MATH  Google Scholar 

  80. Okulewicz, M., Mańdziuk, J.: Swarm Evol. Comput. 48, 44–61 (2019). http://www.sciencedirect.com/science/article/pii/S2210650218306114

    Article  Google Scholar 

  81. Koulaeian, M., Seidgar, H., Kiani, M., Fazlollahtabar, H.: Int. J. Ind. Eng. Theory Appl. Pract. 22, 223–242 (2015). http://journals.sfu.ca/ijietap/index.php/ijie/article/view/1379

    Google Scholar 

  82. Chunyu, R., Xiaobo, W. (eds.) 2010 International Conference on Artificial Intelligence and Computational Intelligence, vol. 1, pp. 552–555. https://doi.org/10.1109/AICI.2010.121

  83. Gillett, B.E., Johnson, J.G.: Omega 4, 711–718 (1976)

    Article  Google Scholar 

  84. Augerat, P., Belenguer, J.M., Benavent, E., Corberán, A., Naddef, D., Rinaldi, G.: Computational results with a branch and cut code for the capacitated vehicle routing problem, Technical Report, IMAG (1995)

    Google Scholar 

  85. Zitzler, E., Laumanns, M., Thiele, L., EUROGEN 2001: Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, pp. 95–100 (2000)

    Google Scholar 

  86. Zitzler, E., Thiele, L.: IEEE Trans. Evol. Comput. 3, 257–271 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Universidad Panamericana through the grant “Fondo Fomento a la Investigación UP 2019”, under project code UP-CI-2019-ING-GDL-08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Nucamendi-Guillén .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Corona-Gutiérrez, K., Cruz, ML., Nucamendi-Guillén, S., Olivares-Benitez, E. (2020). The Cumulative Capacitated Vehicle Routing Problem Including Priority Indexes. In: Derbel, H., Jarboui, B., Siarry, P. (eds) Green Transportation and New Advances in Vehicle Routing Problems. Springer, Cham. https://doi.org/10.1007/978-3-030-45312-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45312-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45311-4

  • Online ISBN: 978-3-030-45312-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics