[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Confidence in Prediction: An Approach for Dynamic Weighted Ensemble

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2020)

Abstract

Combining classifiers in an ensemble is beneficial in achieving better prediction than using a single classifier. Furthermore, each classifier can be associated with a weight in the aggregation to boost the performance of the ensemble system. In this work, we propose a novel dynamic weighted ensemble method. Based on the observation that each classifier provides a different level of confidence in its prediction, we propose to encode the level of confidence of a classifier by associating with each classifier a credibility threshold, computed from the entire training set by minimizing the entropy loss function with the mini-batch gradient descent method. On each test sample, we measure the confidence of each classifier’s output and then compare it to the credibility threshold to determine whether a classifier should be attended in the aggregation. If the condition is satisfied, the confidence level and credibility threshold are used to compute the weight of contribution of the classifier in the aggregation. By this way, we are not only considering the presence but also the contribution of each classifier based on the confidence in its prediction on each test sample. The experiments conducted on a number of datasets show that the proposed method is better than some benchmark algorithms including a non-weighted ensemble method, two dynamic ensemble selection methods, and two Boosting methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://archive.ics.uci.edu/ml/datasets.html.

  2. 2.

    https://www.openml.org.

  3. 3.

    https://moa.cms.waikato.ac.nz.

References

  1. Bakker, B., Heskes, T.: Clustering ensembles of neural network models. Neural Netw. 16(2), 261–269 (2003)

    Article  Google Scholar 

  2. Chen, H., Tiňo, P., Yao, X.: Predictive ensemble pruning by expectation propagation. IEEE Trans. Knowl. Data Eng. 21(7), 999–1013 (2009)

    Article  Google Scholar 

  3. Dang, M.T., Luong, A.V., Vu, T.-T., Nguyen, Q.V.H., Nguyen, T.T., Stantic, B.: An ensemble system with random projection and dynamic ensemble selection. In: Nguyen, N.T., Hoang, D.H., Hong, T.-P., Pham, H., Trawiński, B. (eds.) ACIIDS 2018. LNCS (LNAI), vol. 10751, pp. 576–586. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75417-8_54

    Chapter  Google Scholar 

  4. Demiriz, A., Bennett, K.P., Shawe-Taylor, J.: Linear programming boosting via column generation. Mach. Learn. 46(1–3), 225–254 (2002)

    Article  Google Scholar 

  5. Freund, Y., Schapire, R.E., et al.: Experiments with a new boosting algorithm. In: ICML, vol. 96, pp. 148–156. Citeseer (1996)

    Google Scholar 

  6. Kim, K.J., Cho, S.B.: An evolutionary algorithm approach to optimal ensemble classifiers for DNA microarray data analysis. IEEE Trans. Evol. Comput. 12(3), 377–388 (2008)

    Article  Google Scholar 

  7. Ko, A.H., Sabourin, R., Britto Jr., A.S.: From dynamic classifier selection to dynamic ensemble selection. Pattern Recogn. 41(5), 1718–1731 (2008)

    Article  Google Scholar 

  8. Kuncheva, L.I., Bezdek, J.C., Duin, R.P.: Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recogn. 34(2), 299–314 (2001)

    Article  Google Scholar 

  9. Margineantu, D.D., Dietterich, T.G.: Pruning adaptive boosting. In: ICML. vol. 97, pp. 211–218. Citeseer (1997)

    Google Scholar 

  10. Nguyen, T.T., Dang, M.T., Liew, A.W., Bezdek, J.C.: A weighted multiple classifier framework based on random projection. Inf. Sci. 490, 36–58 (2019)

    Article  MathSciNet  Google Scholar 

  11. Nguyen, T.T., Nguyen, M.P., Pham, X.C., Liew, A.W.C., Pedrycz, W.: Combining heterogeneous classifiers via granular prototypes. Appl. Soft Comput. 73, 795–815 (2018)

    Article  Google Scholar 

  12. Nguyen, T.T., Nguyen, T.T.T., Pham, X.C., Liew, A.W.C.: A novel combining classifier method based on variational inference. Pattern Recogn. 49, 198–212 (2016)

    Article  Google Scholar 

  13. Nguyen, T.T., Pham, X.C., Liew, A.W.C., Pedrycz, W.: Aggregation of classifiers: a justifiable information granularity approach. IEEE Trans. Cybern. 49(6), 2168–2177 (2018)

    Article  Google Scholar 

  14. Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: Rusboost: improving classification performance when training data is skewed. In: 2008 19th International Conference on Pattern Recognition, pp. 1–4. IEEE (2008)

    Google Scholar 

  15. Ting, K.M., Witten, I.H.: Issues in stacked generalization. J. Artif. Intell. Res. 10, 271–289 (1999)

    Article  Google Scholar 

  16. Woloszynski, T., Kurzynski, M., Podsiadlo, P., Stachowiak, G.W.: A measure of competence based on random classification for dynamic ensemble selection. Inf. Fusion 13(3), 207–213 (2012)

    Article  Google Scholar 

  17. Wu, O.: Classifier ensemble by exploring supplementary ordering information. IEEE Trans. Knowl. Data Eng. 30(11), 2065–2077 (2018)

    Google Scholar 

  18. Yijing, L., Haixiang, G., Xiao, L., Yanan, L., Jinling, L.: Adapted ensemble classification algorithm based on multiple classifier system and feature selection for classifying multi-class imbalanced data. Knowl.-Based Syst. 94, 88–104 (2016)

    Article  Google Scholar 

  19. Zhang, Y., Burer, S., Street, W.N.: Ensemble pruning via semi-definite programming. J. Mach. Learn. Res. 7, 1315–1338 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tien Thanh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Do, D.T., Nguyen, T.T., Nguyen, T.T., Luong, A.V., Liew, A.WC., McCall, J. (2020). Confidence in Prediction: An Approach for Dynamic Weighted Ensemble. In: Nguyen, N., Jearanaitanakij, K., Selamat, A., Trawiński, B., Chittayasothorn, S. (eds) Intelligent Information and Database Systems. ACIIDS 2020. Lecture Notes in Computer Science(), vol 12033. Springer, Cham. https://doi.org/10.1007/978-3-030-41964-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41964-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41963-9

  • Online ISBN: 978-3-030-41964-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics