Abstract
Distributed smart cameras are multiple-camera systems that perform computer vision tasks using distributed algorithms. Distributed algorithms scale better to large networks of cameras than do centralized algorithms. However, new approaches are required to many computer vision tasks in order to create efficient distributed algorithms. This chapter motivates the need for distributed computer vision, surveys background material in traditional computer vision, and describes several distributed computer vision algorithms for calibration, tracking, and gesture recognition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
de Agapito, L., Hartley, R., Hayman, E.: Linear self-calibration of a rotating and zooming camera. In: Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on., vol. 1, pp. 2 vol. (xxiii+637+663) (1999). DOI 10.1109/CVPR.1999.786911
den Bergh, M.V., Koller-Meier, E., Kehl, R., Gool, L.V.: Real-time 3d body pose estimation. In: H. Aghajan, A. Cavallaro (eds.) Multi-Camera Networks: Principles and Applications, chap. 14. Academic Press (2009)
Bimbo, A.D., Dini, F., Pernici, F., Grifoni, A.: Pan-tilt-zoom camera networks. In: H. Aghajan, A. Cavallaro (eds.) Multi-Camera Networks: Principles and Applications, chap. 8. Academic Press (2009)
Boykov, V., Huttenlocher, D.: Adaptive bayesian recognition in tracking rigid objects. In: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, pp. 697–704. IEEE (2000)
Bramberger, M., Quaritsch, M., Winkler, T., Rinner, B., Schwabach, H.: Integrating multi-camera tracking into a dynamic task allocation system for smart cameras. In: Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance (AVSS 2005), pp. 474–479. IEEE (2005)
Candy, J.V.: Boostrap particle filtering. IEEE Signal Processing Magazine 73, 73–85 (2007)
Coates, M.: Distributed particle filters for sensor networks. In: Information Processing in Sensor Networks, 2004. IPSN 2004. Third International Symposium on, pp. 99–107. IEEE (2004)
Collins, R.T., Lipton, A.J., Fujiyoshi, H., Kanade, T.: Algorithms for cooperative multisensory surveillance. Proceedings of the IEEE 89(10), 1456–1477 (2001)
Fleuret, F., Berclaz, J., Lengagne, R., Fua, P.: Multicamera people tracking with a probabilistic occupancy map. Pattern Analysis and Machine Intelligence, IEEE Transactions on 30(2), 267–282 (2008). DOI 10.1109/TPAMI.2007.1174
Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, second edn. Cambridge University Press, ISBN: 0521540518 (2004)
Horprasesert, T., Harwood, D., Davis, L.S.: A statistical approach for real-time robust background subtraction and shadow detection. In: IEEE International Conference on Computer Vision FRAME-RATE Workshop (1999)
Instruments, T.: TMS320DM816x DaVinci Digital Media Processors Technical Reference Manual (2011)
Javed, O., Shafique, K., Shah, M.: Appearance modeling for tracking in multiple non-overlapping cameras. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol. 2, pp. 26–33 (2005). DOI 10.1109/CVPR.2005.71
Kim, H., Romberg, J., Wolf, W.: Multi-camera tracking on a graph using markov chain monte carlo. In: Proceedings, 2009 ACM/IEEE International Conference on Distributed Smart Cameras. ACM (2009)
Kim, H., Wolf, M.: Distributed tracking in a large-scale network of smart cameras. In: Proceedings of the Fourth ACM/IEEE International Conference on Distributed Smart Cameras, p. 8–16. ACM Press (2010)
Lamport, L., Melliar-Smith, M.: Synchronizing clocks in the presence of faults. Journal of the ACM 32(1), 52–78 (1985)
Lin, C.H., Lv, T., Wolf, W., Ozer, I.B.: A peer-to-peer architecture for distributed real-time gesture recognition. In: Proceedings, International Conference on Multimedia and Exhibition, pp. 27–30. IEEE (2004)
Mallett, J., Jr., V.M.B.: Eye society. In: Proceedings IEEE ICME 2003. IEEE (2003)
McMillan, L., Bishop, G.: Plenoptic modeling: an image-based rendering system. In: Proceedings, ACM SIGGRAPH, pp. 39–46. ACM (1995)
Oh, S., Russell, S., Sastry, S.: Markov chain monte carlo data association for general multiple-target tracking problems. In: Proc. 43rd IEEE Conf. Decision and Control (2004)
Pollefeys, M., Sinha, S.N., Guan, L., Franco, J.S.: Multi-view calibration, synchronization, and dynamic scene reconstruction. In: H. Aghajan, A. Cavallaro (eds.) Multi-Camera Networks: Principles and Applications, chap. 2. Academic Press (2009)
Porikli, F., Divakaran, A.: Multi-camera calibration, object tracking and query generation. Tech. Rep. TR-2003-100 (2003)
Radke, R., Devarajan, D., Cheng, Z.: Calibrating distributed camera networks. Proceedings of the IEEE 96(10), 1625–1639 (2008)
Rinner, B., Wolf, W.: An introduction to distributed smart cameras. Proceedings of the IEEE 96(10), 1565–1575 (2008)
Schlessman, J.: Methodology and architectures for embedded computer vision (2013). PhD Thesis, Department of Electrical Engineering, Princeton University, in preparation
Sheng, X., Hu, Y.H., Ramanathan, P.: Distributed particle filter with gmm approximation for multiple targets localization and tracking in wireless sensor network. In: Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth International Symposium on, pp. 181–188. IEEE (2005)
Song, B., Roy-Chowdhury, A.: Robust tracking in a camera network: A multi-objective optimization framework. Selected Topics in Signal Processing, IEEE Journal of 2(4), 582–596 (2008). DOI 10.1109/JSTSP. 2008.925992
Veliapasalar, S., Schlessman, J., Chen, C.Y., Wolf, W.H., Singh, J.P.: A scalable clustered camera system for multiple object tracking. EURASIP Journal on Image and Video Processing 2008 (2008). Article ID 542808
Velipasalar, S., Wolf, W.H.: Frame-level temporal calibration of video sequences from unsynchronized cameras. Machine Vision and Applications Journal (DOI 10.1007/s00138-008-0122-6) (2008)
Wolf, W.: High Performance Embedded Computing. Morgan Kaufman (2006)
Wolf, W.: Modern VLSI Design: IP-Based Design, fourth edn. PTR Prentice Hall (2009)
Wolf, W., Ozer, B., Lv, T.: Smart cameras as embedded systems. IEEE Computer 35(9), 48–53 (2002)
Acknowledgements
This work was supported in part by the National Science Foundation under grant 0720536.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Wolf, M., Schlessman, J. (2013). Distributed Smart Cameras and Distributed Computer Vision. In: Bhattacharyya, S., Deprettere, E., Leupers, R., Takala, J. (eds) Handbook of Signal Processing Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6859-2_15
Download citation
DOI: https://doi.org/10.1007/978-1-4614-6859-2_15
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4614-6858-5
Online ISBN: 978-1-4614-6859-2
eBook Packages: EngineeringEngineering (R0)