[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Distributed Smart Cameras and Distributed Computer Vision

  • Chapter
  • First Online:
Handbook of Signal Processing Systems
  • 6157 Accesses

Abstract

Distributed smart cameras are multiple-camera systems that perform computer vision tasks using distributed algorithms. Distributed algorithms scale better to large networks of cameras than do centralized algorithms. However, new approaches are required to many computer vision tasks in order to create efficient distributed algorithms. This chapter motivates the need for distributed computer vision, surveys background material in traditional computer vision, and describes several distributed computer vision algorithms for calibration, tracking, and gesture recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Agapito, L., Hartley, R., Hayman, E.: Linear self-calibration of a rotating and zooming camera. In: Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on., vol. 1, pp. 2 vol. (xxiii+637+663) (1999). DOI 10.1109/CVPR.1999.786911

    Google Scholar 

  2. den Bergh, M.V., Koller-Meier, E., Kehl, R., Gool, L.V.: Real-time 3d body pose estimation. In: H. Aghajan, A. Cavallaro (eds.) Multi-Camera Networks: Principles and Applications, chap. 14. Academic Press (2009)

  3. Bimbo, A.D., Dini, F., Pernici, F., Grifoni, A.: Pan-tilt-zoom camera networks. In: H. Aghajan, A. Cavallaro (eds.) Multi-Camera Networks: Principles and Applications, chap. 8. Academic Press (2009)

  4. Boykov, V., Huttenlocher, D.: Adaptive bayesian recognition in tracking rigid objects. In: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, pp. 697–704. IEEE (2000)

    Google Scholar 

  5. Bramberger, M., Quaritsch, M., Winkler, T., Rinner, B., Schwabach, H.: Integrating multi-camera tracking into a dynamic task allocation system for smart cameras. In: Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance (AVSS 2005), pp. 474–479. IEEE (2005)

    Google Scholar 

  6. Candy, J.V.: Boostrap particle filtering. IEEE Signal Processing Magazine 73, 73–85 (2007)

    Article  Google Scholar 

  7. Coates, M.: Distributed particle filters for sensor networks. In: Information Processing in Sensor Networks, 2004. IPSN 2004. Third International Symposium on, pp. 99–107. IEEE (2004)

    Google Scholar 

  8. Collins, R.T., Lipton, A.J., Fujiyoshi, H., Kanade, T.: Algorithms for cooperative multisensory surveillance. Proceedings of the IEEE 89(10), 1456–1477 (2001)

    Article  Google Scholar 

  9. Fleuret, F., Berclaz, J., Lengagne, R., Fua, P.: Multicamera people tracking with a probabilistic occupancy map. Pattern Analysis and Machine Intelligence, IEEE Transactions on 30(2), 267–282 (2008). DOI 10.1109/TPAMI.2007.1174

    Article  Google Scholar 

  10. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, second edn. Cambridge University Press, ISBN: 0521540518 (2004)

    Google Scholar 

  11. Horprasesert, T., Harwood, D., Davis, L.S.: A statistical approach for real-time robust background subtraction and shadow detection. In: IEEE International Conference on Computer Vision FRAME-RATE Workshop (1999)

    Google Scholar 

  12. Instruments, T.: TMS320DM816x DaVinci Digital Media Processors Technical Reference Manual (2011)

    Google Scholar 

  13. Javed, O., Shafique, K., Shah, M.: Appearance modeling for tracking in multiple non-overlapping cameras. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol. 2, pp. 26–33 (2005). DOI 10.1109/CVPR.2005.71

    Google Scholar 

  14. Kim, H., Romberg, J., Wolf, W.: Multi-camera tracking on a graph using markov chain monte carlo. In: Proceedings, 2009 ACM/IEEE International Conference on Distributed Smart Cameras. ACM (2009)

    Google Scholar 

  15. Kim, H., Wolf, M.: Distributed tracking in a large-scale network of smart cameras. In: Proceedings of the Fourth ACM/IEEE International Conference on Distributed Smart Cameras, p. 8–16. ACM Press (2010)

    Google Scholar 

  16. Lamport, L., Melliar-Smith, M.: Synchronizing clocks in the presence of faults. Journal of the ACM 32(1), 52–78 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lin, C.H., Lv, T., Wolf, W., Ozer, I.B.: A peer-to-peer architecture for distributed real-time gesture recognition. In: Proceedings, International Conference on Multimedia and Exhibition, pp. 27–30. IEEE (2004)

    Google Scholar 

  18. Mallett, J., Jr., V.M.B.: Eye society. In: Proceedings IEEE ICME 2003. IEEE (2003)

    Google Scholar 

  19. McMillan, L., Bishop, G.: Plenoptic modeling: an image-based rendering system. In: Proceedings, ACM SIGGRAPH, pp. 39–46. ACM (1995)

    Google Scholar 

  20. Oh, S., Russell, S., Sastry, S.: Markov chain monte carlo data association for general multiple-target tracking problems. In: Proc. 43rd IEEE Conf. Decision and Control (2004)

    Google Scholar 

  21. Pollefeys, M., Sinha, S.N., Guan, L., Franco, J.S.: Multi-view calibration, synchronization, and dynamic scene reconstruction. In: H. Aghajan, A. Cavallaro (eds.) Multi-Camera Networks: Principles and Applications, chap. 2. Academic Press (2009)

  22. Porikli, F., Divakaran, A.: Multi-camera calibration, object tracking and query generation. Tech. Rep. TR-2003-100 (2003)

    Google Scholar 

  23. Radke, R., Devarajan, D., Cheng, Z.: Calibrating distributed camera networks. Proceedings of the IEEE 96(10), 1625–1639 (2008)

    Article  Google Scholar 

  24. Rinner, B., Wolf, W.: An introduction to distributed smart cameras. Proceedings of the IEEE 96(10), 1565–1575 (2008)

    Article  Google Scholar 

  25. Schlessman, J.: Methodology and architectures for embedded computer vision (2013). PhD Thesis, Department of Electrical Engineering, Princeton University, in preparation

    Google Scholar 

  26. Sheng, X., Hu, Y.H., Ramanathan, P.: Distributed particle filter with gmm approximation for multiple targets localization and tracking in wireless sensor network. In: Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth International Symposium on, pp. 181–188. IEEE (2005)

    Google Scholar 

  27. Song, B., Roy-Chowdhury, A.: Robust tracking in a camera network: A multi-objective optimization framework. Selected Topics in Signal Processing, IEEE Journal of 2(4), 582–596 (2008). DOI 10.1109/JSTSP. 2008.925992

    Article  Google Scholar 

  28. Veliapasalar, S., Schlessman, J., Chen, C.Y., Wolf, W.H., Singh, J.P.: A scalable clustered camera system for multiple object tracking. EURASIP Journal on Image and Video Processing 2008 (2008). Article ID 542808

    Google Scholar 

  29. Velipasalar, S., Wolf, W.H.: Frame-level temporal calibration of video sequences from unsynchronized cameras. Machine Vision and Applications Journal (DOI 10.1007/s00138-008-0122-6) (2008)

    Google Scholar 

  30. Wolf, W.: High Performance Embedded Computing. Morgan Kaufman (2006)

    Google Scholar 

  31. Wolf, W.: Modern VLSI Design: IP-Based Design, fourth edn. PTR Prentice Hall (2009)

    Google Scholar 

  32. Wolf, W., Ozer, B., Lv, T.: Smart cameras as embedded systems. IEEE Computer 35(9), 48–53 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation under grant 0720536.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wolf, M., Schlessman, J. (2013). Distributed Smart Cameras and Distributed Computer Vision. In: Bhattacharyya, S., Deprettere, E., Leupers, R., Takala, J. (eds) Handbook of Signal Processing Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6859-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6859-2_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6858-5

  • Online ISBN: 978-1-4614-6859-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics