Abstract
This chapter introduces to readers the new concept and methodology of confidence distribution and the modern-day distributional inference in statistics. This discussion should be of interest to people who would like to go into the depth of the statistical inference methodology and to utilize distribution estimators in practice. We also include in the discussion the topic of generalized fiducial inference, a special type of modern distributional inference, and relate it to the concept of confidence distribution. Several real data examples are also provided for practitioners. We hope that the selected content covers the greater part of the developments on this subject.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In (ii) the sum spans over \(\binom np\) of p-tuples of indexes i = (1 ≤ i1 < ⋯ < ip ≤ n). For any n × p matrix A, the sub-matrix (A)i is the p × p matrix containing the rows i = (i1, …, ip) of A.
- 2.
ψ(x) is the digamma function defined by \(\psi (z)=\frac {d}{dz}\log (\Gamma (z))\) for z > 0, where Γ is gamma function.
References
Baath, R.: Bayesian First Aid. R package (2013)
Bayarri, M.J., Berger, J.O., Forte, A., García-Donato, G.: Criteria for Bayesian model choice with application to variable selection. Ann. Stat. 40, 1550–1577 (2012)
Beaumont, M.A., Zhang, W., Balding, D.J.: Approximate Bayesian computation in population genetics. Genetics 162, 2025–2035 (2002)
Beran, R.: Balanced simultaneous confidence sets. J. Am. Stat. Assoc. 83, 679–686 (1988)
Berger, J.: Catalog of Objective Priors. Tech. rep., Duke University (2011)
Berger, J.O., Pericchi, L.R.: Objective Bayesian methods for model selection: introduction and comparison. In: Model Selection, vol. 38 of IMS Lecture Notes Monogr. Ser., pp. 135–207. Inst. Math. Statist., Beachwood, OH (2001)
Berger, J.O., Bernardo, J.M., Sun, D.: The formal definition of reference priors. Ann. Stat. 37, 905–938 (2009)
Berger, J.O., Bernardo, J.M., Sun, D.: Objective priors for discrete parameter spaces. J. Am. Stat. Assoc. 107, 636–648 (2012)
Birnbaum, A.: Confidence curves: An omnibus technique for estimation and testing statistical hypotheses. J. Am. Stat. Assoc. 56, 246–249 (1961)
Canty, A., Ripley, B.D.: boot: Bootstrap R (S-Plus) Functions. R package version 1.3-23 (2019)
Casella, G., Berger, R.L.: Statistical Inference, 2nd edn. Wadsworth and Brooks/Cole Advanced Books and Software, Pacific Grove, CA (2002)
Chen, X., Xie, M.: A split-and-conquer approach for analysis of extraordinarily large data. Statistica Sinica 24, 1655–1684 (2014)
Cheng, J.Q., Liu, R.Y., Xie, M.: Fusion Learning, pp. 1–8 (2017). https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112. stat07922
Cisewski, J., Hannig, J.: Generalized fiducial inference for normal linear mixed models. Ann. Stat. 40, 2102–2127 (2012)
Claggett, B., Xie, M., Tian, L.: Meta-analysis with fixed, unknown, study-specific parameters. J. Am. Stat. Assoc. 109, 1660–1671 (2014)
Cox, D.R.: Some problems connected with statistical inference. Ann. Math. Stat. 29, 357–372 (1958). https://doi.org/10.1214/aoms/1177706618.
Cui, Y., Hannig, J.: Nonparametric generalized fiducial inference for survival functions under censoring (with discussions and rejoinder). Biometrika 106, 501–518 (2019a). https://doi.org/10.1093/biomet/asz016
Cui, Y., Hannig, J.: Rejoinder: Nonparametric generalized fiducial inference for survival functions under censoring. Biometrika 106, 527–531 (2019b). https://doi.org/10.1093/biomet/asz032
Cui, Y., Hannig, J.: A fiducial approach to nonparametric deconvolution problem: discrete case. Science China Mathematics. In press
Cui, Y., Hannig, J., Kosorok, M.: A unified nonparametric fiducial approach to interval-censored data. (2021) arXiv:2111.14061
Davison, A.C., Hinkley, D.V.: Bootstrap Methods and Their Applications. Cambridge University Press, Cambridge (1997). http://statwww.epfl.ch/davison/BMA/. ISBN 0-521-57391-2
Dempster, A.P.: The Dempster-Shafer calculus for statisticians. Int. J. Approx. Reason. 48, 365–377 (2008)
DiCiccio, T.J., Efron, B.: Bootstrap confidence intervals. Stat. Sci. 11, 189–228 (1996). https://doi.org/10.1214/ss/1032280214
Edlefsen, P.T., Liu, C., Dempster, A.P.: Estimating limits from Poisson counting data using Dempster–Shafer analysis. Ann. Appl. Stat. 3, 764–790 (2009)
Efron, B.: R.A. Fisher in the 21st century. Stat. Sci. 13, 95–122 (1998)
Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. No. 57 in Monographs on Statistics and Applied Probability. Chapman & Hall/CRC, Boca Raton, FL, USA (1993)
Fisher, R.A.: Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10, 507–521 (1915). http://www.jstor.org/stable/2331838
Fisher, R.A.: Inverse probability. Proc. Camb. Phil. Soc. xxvi, 528–535 (1930)
Fraser, D.A.S.: Statistical inference: Likelihood to significance. J. Am. Stat. Assoc. 86, 258–265 (1991)
Fraser, D.A.S.: Ancillaries and conditional inference. Stat. Sci. 19, 333–369 (2004)
Fraser, D.A.S.: Is Bayes posterior just quick and dirty confidence? Stat. Sci. 26, 299–316 (2011)
Fraser, D.A.S., McDunnough, P.: Further remarks on asymptotic normality of likelihood and conditional analyses. Can. J. Stat. [La Revue Canadienne de Statistique] 12, 183–190 (1984). http://www.jstor.org/stable/3314746.
Fraser, D., Naderi, A.: Exponential models: Approximations for probabilities. Biometrika 94, 1–9 (2008)
Fraser, D., Reid, N., Wong, A.: What a model with data says about theta. Int. J. Stat. Sci. 3, 163–178 (2005)
Fraser, A.M., Fraser, D.A.S., Staicu, A.-M.: The second order ancillary: A differential view with continuity. Bernoulli Off. J. Bernoulli Soc. Math. Stat. Probab. 16, 1208–1223 (2009)
Fraser, D.A.S., Reid, N., Marras, E., Yi, G.Y.: Default Priors for Bayesian and frequentist inference. J. R. Stat. Soc. Ser. B 72, 631–654 (2010)
Hannig, J.: On generalized fiducial inference. Statistica Sinica 19, 491–544 (2009)
Hannig, J.: Discussion of “On the Birnbaum Argument for the Strong Likelihood Principle” by D. G. Mayo. Stat. Sci. 29, 254–258 (2014)
Hannig, J., Lee, T.C.M.: Generalized fiducial inference for wavelet regression. Biometrika 96, 847–860 (2009)
Hannig, J., Xie, M.: A note on Dempster-Shafer recombinations of confidence distributions. Electr. J. Stat. 6, 1943–1966 (2012)
Hannig, J., Iyer, H., Lai, R.C., Lee, T.C.: Generalized fiducial inference: A review and new results. J. Am. Stat. Assoc. 111, 1346–1361 (2016)
Iverson, T.: Generalized fiducial inference. Wiley Interdiscip. Rev. Comput. Stat. 6, 132–143 (2014) https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.1291
Lai, R.C.S., Hannig, J., Lee, T.C.M.: Generalized fiducial inference for ultra-high dimensional regression. J. Am. Stat. Assoc. 110, 760–772 (2015a)
Lai, R.C.S., Hannig, J., Lee, T.C.M.: Generalized fiducial inference for ultrahigh-dimensional regression. J. Am. Stat. Assoc. 110, 760–772 (2015b)
Lawless, J.F.: Statistical Models and Methods for Lifetime Data. Wiley, New York (1982)
Lawless, J.F., Fredette, M.: Frequentist prediction intervals and predictive distributions. Biometrika 92, 529–542 (2005). https://doi.org/10.1093/biomet/92.3.529
Lehmann, E.L.: The fisher, neyman-pearson theories of testing hypotheses: One theory or two? J. Am. Stat. Assoc. 88, 1242–1249 (1993). http://www.jstor.org/stable/2291263.
Li, Y., Gillespie, B.W., Shedden, K., Gillespie, J.A.: Profile likelihood estimation of the correlation coefficient in the presence of left, right or interval censoring and missing data. R J. 10, 159–179 (2018). https://doi.org/10.32614/RJ-2018-040
Liu, Y., Hannig, J.: Generalized fiducial inference for binary logistic item response models. Psychometrika 81, 290–324 (2016)
Liu, Y., Hannig, J.: Generalized fiducial inference for logistic graded response models. Psychometrika 82, 1097–1125 (2017)
Liu, R.Y., Singh, K.: Notions of limiting p values based on data depth and bootstrap. J. Am. Stat. Assoc. 92, 266–277 (1997)
Liu, D., Liu, R.Y., Xie, M.: Exact meta-analysis approach for discrete data and its application to 2× 2 tables with rare events. J. Am. Stat. Assoc. 109, 1450–1465 (2014)
Liu, D., Liu, R.Y., Xie, M.: Multivariate meta-analysis of heterogeneous studies using only summary statistics: Efficiency and robustness. J. Am. Stat. Assoc. 110(509), 326–340 (2015)
Luo, X., Dasgupta, T., Xie, M., Liu, R.: Leveraging the fisher randomization test using confidence distributions: inference, combination and fusion learning. Preprint (2020). arXiv:2004.08472
Marden, J.I.: Sensitive and sturdy p-values. Ann. Stat. 19, 918–934 (1991). http://www.jstor.org/stable/2242091
Martin, R.: Inferential Models, pp. 1–8. American Cancer Society (2017). https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat07997
Martin, R.: On an inferential model construction using generalized associations. J. Stat. Plann. Infer. 195, 105–115 (2018). http:// www.sciencedirect.com/science/article/pii/S0378375816301537. Confidence distributions
Martin, R.: Discussion of Nonparametric generalized fiducial inference for survival functions under censoring. Biometrika 106, 519–522 (2019). https://doi.org/10.1093/biomet/asz022
Martin, R., Liu, C.: Inferential models: A framework for prior-free posterior probabilistic inference. J. Am. Stat. Assoc. 108, 301–313 (2013)
Martin, R., Liu, C.: Conditional inferential models: combining information for prior-free probabilistic inference. J. R. Stat. Soc., Ser. B 77, 195–217 (2015a)
Martin, R., Liu, C.: Inferential Models: Reasoning with Uncertainty. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. CRC Press (2015b). https://books.google.com/books?id=OdSYCgAAQBAJ
Martin, R., Liu, C.: Marginal inferential models: prior-free probabilistic inference on interest parameters. J. Am. Stat. Assoc. 110, 1621–1631 (2015c)
Martin, R., Zhang, J., Liu, C.: Dempster-Shafer theory and statistical inference with weak beliefs. Stat. Sci. 25, 72–87 (2010)
Nair, V.N.: Confidence bands for survival functions with censored data: a comparative study. Technometrics 26, 265–275 (1984)
Neupert, S.D., Hannig, J.: BFF: Bayesian, fiducial, frequentist analysis of age effects in daily diary data. J. Gerontol. Ser. B (2019). https://doi.org/10.1093/geronb/gbz100. Gbz100
Neyman, J.: Fiducial argument and the theory of confidence intervals. Biometrika 32, 128–150 (1941). http://www.jstor.org/stable/2332207
Normand, S.-L.T.: Meta-analysis: formulating, evaluating, combining, and reporting. Stat. Med. 18, 321–359 (1999)
Qiu, Y., Zhang, L., Liu, C.: Exact and efficient inference for partial bayes problems. Electron. J. Stat. 12, 4640–4668 (2018). https://doi.org/10.1214/18-EJS1511
Roy, A., Mathew, T.: A generalized confidence limit for the reliability function of a two-parameter exponential distribution. J. Stat. Plann. Infer. 128, 509–517 (2005)
Schein, P.S.: A comparison of combination chemotherapy and combined modality therapy for locally advanced gastric carcinoma. Cancer 49, 1771–1777 (1982)
Schweder, T.: Confidence nets for curves. Adv. Stat. Model. Infer. Essays Honor Kjell A. Doksum, 593–609 (2007)
Schweder, T., Hjort, N.L.: Confidence and likelihood. Scand. J. Stat. 29, 309–332 (2002)
Schweder, T., Hjort, N.L.: Frequentist analogues of priors and posteriors. Econ. Philos. Econ., 285–317 (2003)
Schweder, T., Hjort, N.L.: Confidence, Likelihood, Probability, vol. 41. Cambridge University Press (2016)
Shen, J., Liu, R.Y., Xie, M.: ifusion: Individualized fusion learning. J. Am. Stat. Assoc. 0, 1–17 (2019)
Signorell, A., et al.: DescTools: Tools for Descriptive Statistics. https://cran.r-project.org/package=DescTools. R package version 0.99.28 (2019)
Singh, K., Xie, M., Strawderman, W.E.: Combining information from independent sources through confidence distributions. Ann. Stat. 33, 159–183 (2005)
Singh, K., Xie, M., Strawderman, W.E.: Confidence distribution (cd): Distribution estimator of a parameter. Lect. Notes Monogr. Ser. 54, 132–150 (2007). http://www.jstor.org/stable/20461464
Taraldsen, G., Lindqvist, B.H.: Fiducial theory and optimal inference. Ann. Stat. 41, 323–341 (2013)
Taraldsen, G., Lindqvist, B.H.: Discussion of Nonparametric generalized fiducial inference for survival functions under censoring. Biometrika 106, 523–526 (2019). https://doi.org/10.1093/biomet/asz027
Tian, L., Cai, T., Pfeffer, M.A., Piankov, N., Cremieux, P.-Y., Wei, L.: Exact and efficient inference procedure for meta-analysis and its application to the analysis of independent 2× 2 tables with all available data but without artificial continuity correction. Biostatistics 10, 275–281 (2008)
Tian, L., Wang, R., Cai, T., Wei, L.-J.: The highest confidence density region and its usage for joint inferences about constrained parameters. Biometrics 67, 604–10 (2011)
Tsui, K.-W., Weerahandi, S.: Generalized p-values in significance testing of hypotheses in the presence of nuisance parameters. J. Am. Stat. Assoc. 84, 602–607 (1989)
Tsui, K.-W., Weerahandi, S.: Corrections: Generalized p-values in significance testing of hypotheses in the presence of nuisance parameters. J. Am. Stat. Assoc. 84(406), 602–607 (1991); MR1010352 (90g:62047); J. Am. Stat. Assoc. 86, 256 (1989)
Veronese, P., Melilli, E.: Fiducial and Confidence Distributions for Real Exponential Families. Scand. J. Stat. (2014, in press)
Wandler, D.V., Hannig, J.: Generalized fiducial confidence intervals for extremes. Extremes 15, 67–87 (2012)
Wang, Y.H.: Fiducial intervals: what are they? Am. Stat. 54, 105–111 (2000)
Williams, J.P., Hannig, J.: Nonpenalized variable selection in high-dimensional linear model settings via generalized fiducial inference. Ann. Stat. 47, 1723–1753 (2019). https://doi.org/10.1214/18-AOS1733
Williams, J.P., Storlie, C.B., Therneau, T.M., Jr., C.R.J., Hannig, J.: A bayesian approach to multistate hidden markov models: Application to dementia progression. J. Am. Stat. Assoc. 0, 1–21 (2019)
Xie, M., Singh, K.: Confidence distribution, the frequentist distribution estimator of a parameter: A review. Int. Stat. Rev. 81, 3–39 (2013)
Xie, M., Singh, K., Strawderman, W.E.: Confidence distributions and a unified framework for meta-analysis. J. Am. Stat. Assoc. 106, 320–333 (2011)
Xie, M., Liu, R.Y., Damaraju, C.V., Olson, W.H.: Incorporating external information in analyses of clinical trials with binary outcomes. Ann. Appl. Stat. 7, 342–368 (2013)
Xu, X., Li, G.: Fiducial inference in the pivotal family of distributions. Sci. China Ser. A Math. 49, 410–432 (2006)
Yang, G., Liu, D., Wang, J., Xie, M.: Meta-analysis framework for exact inferences with application to the analysis of rare events. Biometrics 72, 1378–1386 (2016). https://onlinelibrary.wiley.com/doi/abs/10.1111/biom.12497
Yang, G., Cheng, J.Q., Xie, M., Qian, W.: gmeta: Meta-Analysis via a Unified Framework of Confidence Distribution. https://CRAN.R-project.org/package=gmeta. R package version 2.3-0 (2017)
Zhang, J., Liu, C.: Dempster-Shafer inference with weak beliefs. Statistica Sinica 21, 475–494 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2023 Springer-Verlag London Ltd., part of Springer Nature
About this chapter
Cite this chapter
Cui, Y., Xie, Mg. (2023). Confidence Distribution and Distribution Estimation for Modern Statistical Inference. In: Pham, H. (eds) Springer Handbook of Engineering Statistics. Springer Handbooks. Springer, London. https://doi.org/10.1007/978-1-4471-7503-2_29
Download citation
DOI: https://doi.org/10.1007/978-1-4471-7503-2_29
Published:
Publisher Name: Springer, London
Print ISBN: 978-1-4471-7502-5
Online ISBN: 978-1-4471-7503-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)