[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Confidence Distribution and Distribution Estimation for Modern Statistical Inference

  • Chapter
  • First Online:
Springer Handbook of Engineering Statistics

Part of the book series: Springer Handbooks ((SHB))

  • 3419 Accesses

Abstract

This chapter introduces to readers the new concept and methodology of confidence distribution and the modern-day distributional inference in statistics. This discussion should be of interest to people who would like to go into the depth of the statistical inference methodology and to utilize distribution estimators in practice. We also include in the discussion the topic of generalized fiducial inference, a special type of modern distributional inference, and relate it to the concept of confidence distribution. Several real data examples are also provided for practitioners. We hope that the selected content covers the greater part of the developments on this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 231.00
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 289.00
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In (ii) the sum spans over \(\binom np\) of p-tuples of indexes i = (1 ≤ i1 < ⋯ < ip ≤ n). For any n × p matrix A, the sub-matrix (A)i is the p × p matrix containing the rows i = (i1, …, ip) of A.

  2. 2.

    ψ(x) is the digamma function defined by \(\psi (z)=\frac {d}{dz}\log (\Gamma (z))\) for z > 0, where Γ is gamma function.

References

  1. Baath, R.: Bayesian First Aid. R package (2013)

    Google Scholar 

  2. Bayarri, M.J., Berger, J.O., Forte, A., García-Donato, G.: Criteria for Bayesian model choice with application to variable selection. Ann. Stat. 40, 1550–1577 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Beaumont, M.A., Zhang, W., Balding, D.J.: Approximate Bayesian computation in population genetics. Genetics 162, 2025–2035 (2002)

    Google Scholar 

  4. Beran, R.: Balanced simultaneous confidence sets. J. Am. Stat. Assoc. 83, 679–686 (1988)

    MathSciNet  MATH  Google Scholar 

  5. Berger, J.: Catalog of Objective Priors. Tech. rep., Duke University (2011)

    Google Scholar 

  6. Berger, J.O., Pericchi, L.R.: Objective Bayesian methods for model selection: introduction and comparison. In: Model Selection, vol. 38 of IMS Lecture Notes Monogr. Ser., pp. 135–207. Inst. Math. Statist., Beachwood, OH (2001)

    Google Scholar 

  7. Berger, J.O., Bernardo, J.M., Sun, D.: The formal definition of reference priors. Ann. Stat. 37, 905–938 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Berger, J.O., Bernardo, J.M., Sun, D.: Objective priors for discrete parameter spaces. J. Am. Stat. Assoc. 107, 636–648 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Birnbaum, A.: Confidence curves: An omnibus technique for estimation and testing statistical hypotheses. J. Am. Stat. Assoc. 56, 246–249 (1961)

    MathSciNet  MATH  Google Scholar 

  10. Canty, A., Ripley, B.D.: boot: Bootstrap R (S-Plus) Functions. R package version 1.3-23 (2019)

    Google Scholar 

  11. Casella, G., Berger, R.L.: Statistical Inference, 2nd edn. Wadsworth and Brooks/Cole Advanced Books and Software, Pacific Grove, CA (2002)

    MATH  Google Scholar 

  12. Chen, X., Xie, M.: A split-and-conquer approach for analysis of extraordinarily large data. Statistica Sinica 24, 1655–1684 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Cheng, J.Q., Liu, R.Y., Xie, M.: Fusion Learning, pp. 1–8 (2017). https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112. stat07922

  14. Cisewski, J., Hannig, J.: Generalized fiducial inference for normal linear mixed models. Ann. Stat. 40, 2102–2127 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Claggett, B., Xie, M., Tian, L.: Meta-analysis with fixed, unknown, study-specific parameters. J. Am. Stat. Assoc. 109, 1660–1671 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Cox, D.R.: Some problems connected with statistical inference. Ann. Math. Stat. 29, 357–372 (1958). https://doi.org/10.1214/aoms/1177706618.

    MathSciNet  MATH  Google Scholar 

  17. Cui, Y., Hannig, J.: Nonparametric generalized fiducial inference for survival functions under censoring (with discussions and rejoinder). Biometrika 106, 501–518 (2019a). https://doi.org/10.1093/biomet/asz016

    MathSciNet  MATH  Google Scholar 

  18. Cui, Y., Hannig, J.: Rejoinder: Nonparametric generalized fiducial inference for survival functions under censoring. Biometrika 106, 527–531 (2019b). https://doi.org/10.1093/biomet/asz032

    MathSciNet  MATH  Google Scholar 

  19. Cui, Y., Hannig, J.: A fiducial approach to nonparametric deconvolution problem: discrete case. Science China Mathematics. In press

    Google Scholar 

  20. Cui, Y., Hannig, J., Kosorok, M.: A unified nonparametric fiducial approach to interval-censored data. (2021) arXiv:2111.14061

    Google Scholar 

  21. Davison, A.C., Hinkley, D.V.: Bootstrap Methods and Their Applications. Cambridge University Press, Cambridge (1997). http://statwww.epfl.ch/davison/BMA/. ISBN 0-521-57391-2

    MATH  Google Scholar 

  22. Dempster, A.P.: The Dempster-Shafer calculus for statisticians. Int. J. Approx. Reason. 48, 365–377 (2008)

    MathSciNet  MATH  Google Scholar 

  23. DiCiccio, T.J., Efron, B.: Bootstrap confidence intervals. Stat. Sci. 11, 189–228 (1996). https://doi.org/10.1214/ss/1032280214

    MathSciNet  MATH  Google Scholar 

  24. Edlefsen, P.T., Liu, C., Dempster, A.P.: Estimating limits from Poisson counting data using Dempster–Shafer analysis. Ann. Appl. Stat. 3, 764–790 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Efron, B.: R.A. Fisher in the 21st century. Stat. Sci. 13, 95–122 (1998)

    Google Scholar 

  26. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. No. 57 in Monographs on Statistics and Applied Probability. Chapman & Hall/CRC, Boca Raton, FL, USA (1993)

    Google Scholar 

  27. Fisher, R.A.: Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10, 507–521 (1915). http://www.jstor.org/stable/2331838

    Google Scholar 

  28. Fisher, R.A.: Inverse probability. Proc. Camb. Phil. Soc. xxvi, 528–535 (1930)

    Google Scholar 

  29. Fraser, D.A.S.: Statistical inference: Likelihood to significance. J. Am. Stat. Assoc. 86, 258–265 (1991)

    MathSciNet  MATH  Google Scholar 

  30. Fraser, D.A.S.: Ancillaries and conditional inference. Stat. Sci. 19, 333–369 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Fraser, D.A.S.: Is Bayes posterior just quick and dirty confidence? Stat. Sci. 26, 299–316 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Fraser, D.A.S., McDunnough, P.: Further remarks on asymptotic normality of likelihood and conditional analyses. Can. J. Stat. [La Revue Canadienne de Statistique] 12, 183–190 (1984). http://www.jstor.org/stable/3314746.

  33. Fraser, D., Naderi, A.: Exponential models: Approximations for probabilities. Biometrika 94, 1–9 (2008)

    Google Scholar 

  34. Fraser, D., Reid, N., Wong, A.: What a model with data says about theta. Int. J. Stat. Sci. 3, 163–178 (2005)

    Google Scholar 

  35. Fraser, A.M., Fraser, D.A.S., Staicu, A.-M.: The second order ancillary: A differential view with continuity. Bernoulli Off. J. Bernoulli Soc. Math. Stat. Probab. 16, 1208–1223 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Fraser, D.A.S., Reid, N., Marras, E., Yi, G.Y.: Default Priors for Bayesian and frequentist inference. J. R. Stat. Soc. Ser. B 72, 631–654 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Hannig, J.: On generalized fiducial inference. Statistica Sinica 19, 491–544 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Hannig, J.: Discussion of “On the Birnbaum Argument for the Strong Likelihood Principle” by D. G. Mayo. Stat. Sci. 29, 254–258 (2014)

    MATH  Google Scholar 

  39. Hannig, J., Lee, T.C.M.: Generalized fiducial inference for wavelet regression. Biometrika 96, 847–860 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Hannig, J., Xie, M.: A note on Dempster-Shafer recombinations of confidence distributions. Electr. J. Stat. 6, 1943–1966 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Hannig, J., Iyer, H., Lai, R.C., Lee, T.C.: Generalized fiducial inference: A review and new results. J. Am. Stat. Assoc. 111, 1346–1361 (2016)

    MathSciNet  Google Scholar 

  42. Iverson, T.: Generalized fiducial inference. Wiley Interdiscip. Rev. Comput. Stat. 6, 132–143 (2014) https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.1291

    Google Scholar 

  43. Lai, R.C.S., Hannig, J., Lee, T.C.M.: Generalized fiducial inference for ultra-high dimensional regression. J. Am. Stat. Assoc. 110, 760–772 (2015a)

    MATH  Google Scholar 

  44. Lai, R.C.S., Hannig, J., Lee, T.C.M.: Generalized fiducial inference for ultrahigh-dimensional regression. J. Am. Stat. Assoc. 110, 760–772 (2015b)

    MathSciNet  MATH  Google Scholar 

  45. Lawless, J.F.: Statistical Models and Methods for Lifetime Data. Wiley, New York (1982)

    MATH  Google Scholar 

  46. Lawless, J.F., Fredette, M.: Frequentist prediction intervals and predictive distributions. Biometrika 92, 529–542 (2005). https://doi.org/10.1093/biomet/92.3.529

    MathSciNet  MATH  Google Scholar 

  47. Lehmann, E.L.: The fisher, neyman-pearson theories of testing hypotheses: One theory or two? J. Am. Stat. Assoc. 88, 1242–1249 (1993). http://www.jstor.org/stable/2291263.

    MathSciNet  MATH  Google Scholar 

  48. Li, Y., Gillespie, B.W., Shedden, K., Gillespie, J.A.: Profile likelihood estimation of the correlation coefficient in the presence of left, right or interval censoring and missing data. R J. 10, 159–179 (2018). https://doi.org/10.32614/RJ-2018-040

    Google Scholar 

  49. Liu, Y., Hannig, J.: Generalized fiducial inference for binary logistic item response models. Psychometrika 81, 290–324 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Liu, Y., Hannig, J.: Generalized fiducial inference for logistic graded response models. Psychometrika 82, 1097–1125 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Liu, R.Y., Singh, K.: Notions of limiting p values based on data depth and bootstrap. J. Am. Stat. Assoc. 92, 266–277 (1997)

    MathSciNet  MATH  Google Scholar 

  52. Liu, D., Liu, R.Y., Xie, M.: Exact meta-analysis approach for discrete data and its application to 2× 2 tables with rare events. J. Am. Stat. Assoc. 109, 1450–1465 (2014)

    MathSciNet  MATH  Google Scholar 

  53. Liu, D., Liu, R.Y., Xie, M.: Multivariate meta-analysis of heterogeneous studies using only summary statistics: Efficiency and robustness. J. Am. Stat. Assoc. 110(509), 326–340 (2015)

    MathSciNet  MATH  Google Scholar 

  54. Luo, X., Dasgupta, T., Xie, M., Liu, R.: Leveraging the fisher randomization test using confidence distributions: inference, combination and fusion learning. Preprint (2020). arXiv:2004.08472

    Google Scholar 

  55. Marden, J.I.: Sensitive and sturdy p-values. Ann. Stat. 19, 918–934 (1991). http://www.jstor.org/stable/2242091

    MathSciNet  MATH  Google Scholar 

  56. Martin, R.: Inferential Models, pp. 1–8. American Cancer Society (2017). https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat07997

  57. Martin, R.: On an inferential model construction using generalized associations. J. Stat. Plann. Infer. 195, 105–115 (2018). http:// www.sciencedirect.com/science/article/pii/S0378375816301537. Confidence distributions

  58. Martin, R.: Discussion of Nonparametric generalized fiducial inference for survival functions under censoring. Biometrika 106, 519–522 (2019). https://doi.org/10.1093/biomet/asz022

    MathSciNet  MATH  Google Scholar 

  59. Martin, R., Liu, C.: Inferential models: A framework for prior-free posterior probabilistic inference. J. Am. Stat. Assoc. 108, 301–313 (2013)

    MathSciNet  MATH  Google Scholar 

  60. Martin, R., Liu, C.: Conditional inferential models: combining information for prior-free probabilistic inference. J. R. Stat. Soc., Ser. B 77, 195–217 (2015a)

    Google Scholar 

  61. Martin, R., Liu, C.: Inferential Models: Reasoning with Uncertainty. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. CRC Press (2015b). https://books.google.com/books?id=OdSYCgAAQBAJ

    MATH  Google Scholar 

  62. Martin, R., Liu, C.: Marginal inferential models: prior-free probabilistic inference on interest parameters. J. Am. Stat. Assoc. 110, 1621–1631 (2015c)

    MathSciNet  MATH  Google Scholar 

  63. Martin, R., Zhang, J., Liu, C.: Dempster-Shafer theory and statistical inference with weak beliefs. Stat. Sci. 25, 72–87 (2010)

    MathSciNet  MATH  Google Scholar 

  64. Nair, V.N.: Confidence bands for survival functions with censored data: a comparative study. Technometrics 26, 265–275 (1984)

    Google Scholar 

  65. Neupert, S.D., Hannig, J.: BFF: Bayesian, fiducial, frequentist analysis of age effects in daily diary data. J. Gerontol. Ser. B (2019). https://doi.org/10.1093/geronb/gbz100. Gbz100

  66. Neyman, J.: Fiducial argument and the theory of confidence intervals. Biometrika 32, 128–150 (1941). http://www.jstor.org/stable/2332207

    MathSciNet  MATH  Google Scholar 

  67. Normand, S.-L.T.: Meta-analysis: formulating, evaluating, combining, and reporting. Stat. Med. 18, 321–359 (1999)

    Google Scholar 

  68. Qiu, Y., Zhang, L., Liu, C.: Exact and efficient inference for partial bayes problems. Electron. J. Stat. 12, 4640–4668 (2018). https://doi.org/10.1214/18-EJS1511

    MathSciNet  MATH  Google Scholar 

  69. Roy, A., Mathew, T.: A generalized confidence limit for the reliability function of a two-parameter exponential distribution. J. Stat. Plann. Infer. 128, 509–517 (2005)

    MathSciNet  MATH  Google Scholar 

  70. Schein, P.S.: A comparison of combination chemotherapy and combined modality therapy for locally advanced gastric carcinoma. Cancer 49, 1771–1777 (1982)

    Google Scholar 

  71. Schweder, T.: Confidence nets for curves. Adv. Stat. Model. Infer. Essays Honor Kjell A. Doksum, 593–609 (2007)

    Google Scholar 

  72. Schweder, T., Hjort, N.L.: Confidence and likelihood. Scand. J. Stat. 29, 309–332 (2002)

    MathSciNet  MATH  Google Scholar 

  73. Schweder, T., Hjort, N.L.: Frequentist analogues of priors and posteriors. Econ. Philos. Econ., 285–317 (2003)

    Google Scholar 

  74. Schweder, T., Hjort, N.L.: Confidence, Likelihood, Probability, vol. 41. Cambridge University Press (2016)

    Google Scholar 

  75. Shen, J., Liu, R.Y., Xie, M.: ifusion: Individualized fusion learning. J. Am. Stat. Assoc. 0, 1–17 (2019)

    Google Scholar 

  76. Signorell, A., et al.: DescTools: Tools for Descriptive Statistics. https://cran.r-project.org/package=DescTools. R package version 0.99.28 (2019)

  77. Singh, K., Xie, M., Strawderman, W.E.: Combining information from independent sources through confidence distributions. Ann. Stat. 33, 159–183 (2005)

    MathSciNet  MATH  Google Scholar 

  78. Singh, K., Xie, M., Strawderman, W.E.: Confidence distribution (cd): Distribution estimator of a parameter. Lect. Notes Monogr. Ser. 54, 132–150 (2007). http://www.jstor.org/stable/20461464

    MathSciNet  Google Scholar 

  79. Taraldsen, G., Lindqvist, B.H.: Fiducial theory and optimal inference. Ann. Stat. 41, 323–341 (2013)

    MathSciNet  MATH  Google Scholar 

  80. Taraldsen, G., Lindqvist, B.H.: Discussion of Nonparametric generalized fiducial inference for survival functions under censoring. Biometrika 106, 523–526 (2019). https://doi.org/10.1093/biomet/asz027

    MathSciNet  MATH  Google Scholar 

  81. Tian, L., Cai, T., Pfeffer, M.A., Piankov, N., Cremieux, P.-Y., Wei, L.: Exact and efficient inference procedure for meta-analysis and its application to the analysis of independent 2× 2 tables with all available data but without artificial continuity correction. Biostatistics 10, 275–281 (2008)

    MATH  Google Scholar 

  82. Tian, L., Wang, R., Cai, T., Wei, L.-J.: The highest confidence density region and its usage for joint inferences about constrained parameters. Biometrics 67, 604–10 (2011)

    MathSciNet  MATH  Google Scholar 

  83. Tsui, K.-W., Weerahandi, S.: Generalized p-values in significance testing of hypotheses in the presence of nuisance parameters. J. Am. Stat. Assoc. 84, 602–607 (1989)

    MathSciNet  Google Scholar 

  84. Tsui, K.-W., Weerahandi, S.: Corrections: Generalized p-values in significance testing of hypotheses in the presence of nuisance parameters. J. Am. Stat. Assoc. 84(406), 602–607 (1991); MR1010352 (90g:62047); J. Am. Stat. Assoc. 86, 256 (1989)

    Google Scholar 

  85. Veronese, P., Melilli, E.: Fiducial and Confidence Distributions for Real Exponential Families. Scand. J. Stat. (2014, in press)

    Google Scholar 

  86. Wandler, D.V., Hannig, J.: Generalized fiducial confidence intervals for extremes. Extremes 15, 67–87 (2012)

    MathSciNet  MATH  Google Scholar 

  87. Wang, Y.H.: Fiducial intervals: what are they? Am. Stat. 54, 105–111 (2000)

    MathSciNet  Google Scholar 

  88. Williams, J.P., Hannig, J.: Nonpenalized variable selection in high-dimensional linear model settings via generalized fiducial inference. Ann. Stat. 47, 1723–1753 (2019). https://doi.org/10.1214/18-AOS1733

    MathSciNet  MATH  Google Scholar 

  89. Williams, J.P., Storlie, C.B., Therneau, T.M., Jr., C.R.J., Hannig, J.: A bayesian approach to multistate hidden markov models: Application to dementia progression. J. Am. Stat. Assoc. 0, 1–21 (2019)

    Google Scholar 

  90. Xie, M., Singh, K.: Confidence distribution, the frequentist distribution estimator of a parameter: A review. Int. Stat. Rev. 81, 3–39 (2013)

    MathSciNet  MATH  Google Scholar 

  91. Xie, M., Singh, K., Strawderman, W.E.: Confidence distributions and a unified framework for meta-analysis. J. Am. Stat. Assoc. 106, 320–333 (2011)

    MATH  Google Scholar 

  92. Xie, M., Liu, R.Y., Damaraju, C.V., Olson, W.H.: Incorporating external information in analyses of clinical trials with binary outcomes. Ann. Appl. Stat. 7, 342–368 (2013)

    MathSciNet  MATH  Google Scholar 

  93. Xu, X., Li, G.: Fiducial inference in the pivotal family of distributions. Sci. China Ser. A Math. 49, 410–432 (2006)

    MathSciNet  MATH  Google Scholar 

  94. Yang, G., Liu, D., Wang, J., Xie, M.: Meta-analysis framework for exact inferences with application to the analysis of rare events. Biometrics 72, 1378–1386 (2016). https://onlinelibrary.wiley.com/doi/abs/10.1111/biom.12497

    MathSciNet  MATH  Google Scholar 

  95. Yang, G., Cheng, J.Q., Xie, M., Qian, W.: gmeta: Meta-Analysis via a Unified Framework of Confidence Distribution. https://CRAN.R-project.org/package=gmeta. R package version 2.3-0 (2017)

  96. Zhang, J., Liu, C.: Dempster-Shafer inference with weak beliefs. Statistica Sinica 21, 475–494 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifan Cui .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag London Ltd., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cui, Y., Xie, Mg. (2023). Confidence Distribution and Distribution Estimation for Modern Statistical Inference. In: Pham, H. (eds) Springer Handbook of Engineering Statistics. Springer Handbooks. Springer, London. https://doi.org/10.1007/978-1-4471-7503-2_29

Download citation

Publish with us

Policies and ethics