[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Evaluation of the Physiological Status of Encapsulated Probiotic Bacterial Cells Using Flow Cytometry

  • Chapter
  • First Online:
Basic Protocols in Encapsulation of Food Ingredients

Abstract

Flow cytometry is a sensitive method for the detection and quantification of physiological and structural conditions of bacterial cells, including probiotics and other bacteria of biotechnological importance to the food sector. Double staining with propidium iodide (PI) and/or carboxyfluorescein diacetate (cFDA) allows the differentiation of three subpopulations in the cytogram: dead cells (PI positive, cFDA negative = red cells), viable cells (cFDA positive, PI negative = green cells), and altered cells (PI positive, cFDA positive = green and red cells). To procedure with double staining, suspend the encapsulated cell with phosphate buffer saline (PBS), harvest by centrifugation, add 10 μL/mL of cFDA and 10 μL/mL of PI to the suspension, and incubate for 15 min at 37 °C (one by one). Afterward, centrifuge the sample, discard the supernatant, and resuspend with 1 mL of PBS. The flow cytometer collects the signs of cFDA in FL1 and PI in FL3 band-pass filters, acquiring a total of 10,000 events for each sample. Pass an unmarked sample before marked sampled to define the parameters of cytometer gates. Evaluate graphs generated with data acquired for each evaluated sample.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 139.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vivek K, Mishra S, Pradhan RC et al (2023) A comprehensive review on microencapsulation of probiotics: technology, carriers and current trends. Appl Food Res 3(1):100248. https://doi.org/10.1016/j.afres.2022.100248

    Article  CAS  Google Scholar 

  2. Tarifa MC, Piqueras CM, Genovese DB, Brugnoni LI (2021) Microencapsulation of Lactobacillus casei and Lactobacillus rhamnosus in pectin and pectin-inulin microgel particles: effect on bacterial survival under storage conditions. Int J Biol Macromol 179:457–465. https://doi.org/10.1016/j.ijbiomac.2021.03.038

    Article  CAS  PubMed  Google Scholar 

  3. Popović M, Stojanović M, Veličković Z, Kovačević A, Miljković R, Mirković N, Marinković A (2021) Characterization of potential probiotic strain, L. reuteri B2, and its microencapsulation using alginate-based biopolymers. Int J Biol Macromol 183:423–434. https://doi.org/10.1016/j.ijbiomac.2021.04.177

    Article  CAS  PubMed  Google Scholar 

  4. de Andrade DP, Bastos SC, Ramos CL et al (2023) Microencapsulation of presumptive probiotic bacteria Lactiplantibacillus plantarum CCMA 0359: technology and potential application in cream cheese. Int Dairy J 143:105669. https://doi.org/10.1016/j.idairyj.2023.105669

    Article  CAS  Google Scholar 

  5. Guo Q, Li S, Tang J, Chang S et al (2022) Microencapsulation of Lactobacillus plantarum by spray drying: protective effects during simulated food processing, gastrointestinal conditions, and in kefir. Int J Biol Macromol 194:539–545. https://doi.org/10.1016/j.ijbiomac.2021.11.096

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Y, Lin J, Zhong Q (2015) The increased viability of probiotic Lactobacillus salivarius NRRL B-30514 encapsulated in emulsions with multiple lipid-protein-pectin layers. Food Res Int 71:9–15. https://doi.org/10.1016/j.foodres.2015.02.017

    Article  CAS  Google Scholar 

  7. Rodrigues VCC, da Silva LGS, Simabuco FM, Venema K, Antunes AEC (2019) Survival, metabolic status and cellular morphology of probiotics in dairy products and dietary supplement after simulated digestion. J Funct Foods 55:126–134. https://doi.org/10.1016/j.jff.2019.01.046

    Article  CAS  Google Scholar 

  8. Barbosa IM, da Cruz Almeida ÉT, Gomes ACA, de Souza EL (2020) Evidence on the induction of viable but non-culturable state in Listeria monocytogenes by Origanum vulgare L. and Rosmarinus officinalis L. essential oils in a meat-based broth. Innov Food Sci Emerg Technol 62:102351. https://doi.org/10.1016/j.ifset.2020.102351

    Article  CAS  Google Scholar 

  9. Rodrigues NPA, Garcia EF, Sampaio KB, do HMA N, de Sousa Guedes JP, de Souza EL (2022) Dynamics of physiological responses of potentially probiotic fruit-derived Limosilactobacillus fermentum in apple and orange juices during refrigeration storage and exposure to simulated gastrointestinal conditions. Arch Microbiol 204:1–11. https://doi.org/10.1007/s00203-021-02672-1

    Article  CAS  Google Scholar 

  10. Singh A, Barnard TG (2021) A possible flow cytometry-based viability and vitality assessment protocol for pathogenic Vibrio cholerae O1 and O139 postexposure to simulated gastric fluid. Biomed Res Int 2021:1. https://doi.org/10.1155/2021/5551845

    Article  CAS  Google Scholar 

  11. ISO 19344, Starter cultures, probiotics and fermented products — Quantification of lactic acid bacteria by flow cytometry, milk and milk products, Geneva Int, 2015

    Google Scholar 

  12. Sampaio KB, de Brito Alves JL, do Nascimento YM et al (2024) Effects of simulated gastrointestinal conditions on combined potentially probiotic Limosilactobacillus fermentum 296, quercetin, and/or resveratrol as bioactive components of novel nutraceuticals. Probiotics Antimicrob Proteins 16:308–319. https://doi.org/10.1007/s12602-023-10046-w

    Article  CAS  PubMed  Google Scholar 

  13. de Oliveira SPA, de Nascimento HMA, Rodrigues NPA, Sampaio KB, dos Santos Lima M, da Conceição ML, de Souza EL (2023) Different parts from the whole red beet (Beta vulgaris L.) valorization with stimulatory effects on probiotic lactobacilli and protection against gastrointestinal conditions. Food Biosci 52:102439. https://doi.org/10.1016/j.fbio.2023.102439

    Article  CAS  Google Scholar 

  14. Mafaldo ÍM, de Medeiros VPB, da Costa WKA et al (2022) Survival during long-term storage, membrane integrity, and ultrastructural aspects of Lactobacillus acidophilus 05 and Lacticaseibacillus casei 01 freeze-dried with freshwater microalgae biomasses. Food Res Int 159:111620. https://doi.org/10.1016/j.foodres.2022.111620

    Article  CAS  Google Scholar 

  15. Nascimento DS, Sampaio KB, do Nascimento YM et al (2024) Evaluating the stability of a novel nutraceutical formulation combining probiotic Limosilactobacillus fermentum 296, quercetin, and resveratrol under different storage conditions. Probiotics Antimicrob Proteins 16:13–25. https://doi.org/10.1007/s12602-022-10011-z

    Article  CAS  PubMed  Google Scholar 

  16. Araújo CM, Sampaio KB, Menezes FNDD et al (2020) Protective effects of tropical fruit processing coproducts on probiotic Lactobacillus strains during freeze-drying and storage. Microorganisms 8(1):96. https://doi.org/10.3390/microorganisms8010096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zand E, Froehling A, Schoenher C, Zunabovic-Pichler M, Schlueter O, Jaeger H (2021) Potential of flow cytometric approaches for rapid microbial detection and characterization in the food industry—a review. Food Secur 10(12):3112. https://doi.org/10.3390/foods10123112

    Article  CAS  Google Scholar 

  18. Rosenberg M, Azevedo NF, Ivask A (2019) Propidium iodide staining underestimates viability of adherent bacterial cells. Sci Rep 9(1):6483. https://doi.org/10.1038/s41598-019-42906-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bouix M, Ghorbal S, Picque D, Perret B, Saulou-Bérion C (2022) A rapid method for the assessment of the vitality of microorganisms using flow cytometry. Cytometry A 101(7):577–587. https://doi.org/10.1002/cyto.a.24553

    Article  CAS  PubMed  Google Scholar 

  20. de Sousa Guedes JP, de Souza EL (2018) Investigation of damage to Escherichia coli, Listeria monocytogenes and Salmonella Enteritidis exposed to Mentha arvensis L. and M. piperita L. essential oils in pineapple and mango juice by flow cytometry. Food Microbiol 76:564–571. https://doi.org/10.1016/j.fm.2017.09.020

    Article  CAS  PubMed  Google Scholar 

  21. Wilkinson MG (2018) Flow cytometry as a potential method of measuring bacterial viability in probiotic products: a review. Trends Food Sci Technol 78:1–10. https://doi.org/10.1016/j.tifs.2018.05.006

    Article  CAS  Google Scholar 

  22. Shi L, Günther S, Hübschmann T, Wick LY, Harms H, Müller S (2007) Limits of propidium iodide as a cell viability indicator for environmental bacteria. Cytometry A 71(8):592–598. https://doi.org/10.1002/cyto.a.20402

    Article  PubMed  Google Scholar 

  23. Ma X, Wang L, Dai L, Kwok LY, Bao Q (2023) Rapid detection of the activity of Lacticaseibacillus casei Zhang by flow cytometry. Food Secur 12(6):1208. https://doi.org/10.3390/foods12061208

    Article  CAS  Google Scholar 

  24. Hoefel D, Grooby WL, Monis PT, Andrews S, Saint CP (2003) A comparative study of carboxyfluorescein diacetate and carboxyfluorescein diacetate succinimidyl ester as indicators of bacterial activity. J Microbiol Methods 52(3):379–388. https://doi.org/10.1016/s0167-7012(02)00207-5

    Article  CAS  PubMed  Google Scholar 

  25. Rault A, Béal C, Ghorbal S, Ogier JC, Bouix M (2007) Multiparametric flow cytometry allows rapid assessment and comparison of lactic acid bacteria viability after freezing and during frozen storage. Cryobiology 55(1):35–43. https://doi.org/10.1016/j.cryobiol.2007.04.005

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evandro Leite de Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodrigues de Albuquerque, T.M., Brito Sampaio, K., da Costa Lima, M., Leite de Souza, E. (2025). Evaluation of the Physiological Status of Encapsulated Probiotic Bacterial Cells Using Flow Cytometry. In: Gomez-Zavaglia, A. (eds) Basic Protocols in Encapsulation of Food Ingredients. Methods and Protocols in Food Science . Humana, New York, NY. https://doi.org/10.1007/978-1-0716-4148-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-4148-4_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-4147-7

  • Online ISBN: 978-1-0716-4148-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics