[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

EGSRNet: Emotion-Label Guiding and Similarity Reasoning Network for Multimodal Sentiment Analysis

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15035))

Included in the following conference series:

  • 197 Accesses

Abstract

Multimodal sentiment analysis has attracted many research interests in social media. Existing methods mainly rely on mining the global/local information in the image, to realize the fusion with better text information, while ignoring the inherent semantic information contained in the text. For this purpose, the Emotion-label Guiding and Similarity Reasoning Network(EGSRNet) is proposed, which introduces emotion-label guided text features to extract hidden semantic information to improve local image-text interaction, and realize deeper understanding and analysis of image-text by combining context information. Specifically, the Image-Text Feature Extraction module is used to fully extract the global/local-entity image-text features to improve the utilization rate of vital features. For text features, the emotion-label is introduced to enhance the representation ability of deep semantic information. Secondly, to explicitly calculate the similarity between text and local-entity image features, capture the image-text correlation and fully interact, a Local-Entity Similarity Reasoning module based on the attention mechanism is designed. Finally, multimodal interaction is achieved by combining the global image-text context, and the data/label-based contrastive learning is introduced to improve performance. Experimental results show that the proposed model outperforms the baseline methods on three public datasets.

Supported by the National Natural Science Foundation of China under Grant (62162065), the Joint Special Project Research Foundation of Yunnan Province (202401BF070001-023), and the Yunnan Fundamental Research Projects (202201AT070167), the Yunnan University Research Innovation Project for Recommended Exempt Postgraduates (TM-23236964).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 64.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cai, Y., Cai, H., Wan, X.: Multi-modal sarcasm detection in twitter with hierarchical fusion model. In: Association for Computational Linguistics, pp. 2506–2515 (2019)

    Google Scholar 

  2. Chen, T., Borth, D., Darrell, T., Chang, S.: DeepSentiBank: Visual Sentiment Concept Classification with Deep Convolutional Neural Networks. Comput. Sci. (2014)

    Google Scholar 

  3. Chen, Y.: Convolutional neural network for sentence classification. MS thesis. University of Waterloo (2015)

    Google Scholar 

  4. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: Practical automated data augmentation with a reduced search space. In: Conference on Computer Vision and Pattern Recognition, pp. 3008–3017 (2020)

    Google Scholar 

  5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Association for Computational Linguistics, pp. 4171–4186 (2018)

    Google Scholar 

  6. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Houlsby, N.: An image is worth 16×16 words: transformers for image recognition at scale. In: Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Kim, Y.: Convolutional neural networks for sentence classification. In: Association for Computational Linguistics, pp. 1746–1751 (2014)

    Google Scholar 

  9. Kumar, A., Srinivasan, K., Cheng, W., Zomaya, A.Y.: Hybrid context enriched deep learning model for fine-grained sentiment analysis in textual and visual semiotic modality social data. Inf. Process. Manag. 57(1), 102141.1–102141.25 (2020)

    Google Scholar 

  10. Li, Z., Xu, B., Zhu, C., Zhao, T.: CLMLF:A contrastive learning and multi-layer fusion method for multimodal sentiment detection. In: Association for Computational Linguistics, pp. 2282–2294 (2022)

    Google Scholar 

  11. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 2579–2605 (2008)

    Google Scholar 

  12. Machajdik, J., Hanbury, A.: Affective image classification using features inspired by psychology and art theory. In: Proceedings of the 18th International Conference on Multimedia, pp. 83–92 (2010)

    Google Scholar 

  13. Niu, T., Zhu, S., Pang, L., El Saddik, A.: Sentiment analysis on multi-view social data. In: Tian, Q., Sebe, N., Qi, G.J., Huet, B., Hong, R., Liu, X. (eds.) MultiMedia Modeling 2016. LNCS, vol. 9517, pp. 15–27. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27674-8_2

  14. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? sentiment classification using machine learning techniques. In: Association for Computational Linguistics, pp.79-86 (2002)

    Google Scholar 

  15. Rasiwasia, N., Costa Pereira, J., Coviello, E., Doyle, G., Lanckriet, G.R., Levy, R., Vasconcelos, N.: A new approach to cross-modal multimedia retrieval. In: Proceedings of the 18th ACM International Conference on Multimedia, pp. 251–260 (2010)

    Google Scholar 

  16. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2015)

    Article  MATH  Google Scholar 

  17. Schifanella, R., De Juan, P., Tetreault, J., Cao, L.: Detecting sarcasm in multimodal social platforms. In: Proceedings of the 24th ACM International Conference on Multimedia, pp. 1136–1145 (2016)

    Google Scholar 

  18. Shin, B., Lee, T., Choi, J.D.: Lexicon integrated CNN models with attention for sentiment analysis. In: Workshop on Computational Approaches to Subjectivity, pp. 149–158 (2017)

    Google Scholar 

  19. Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)

    Article  MATH  Google Scholar 

  20. Turney, P.: Thumbs up or thumbs down? semantic orientation applied to unsupervised classification of reviews. In: Association for Computational Linguistics, pp. 417–424 (2002)

    Google Scholar 

  21. Wang, X., Jia, J., Yin, J., Cai, L.: Interpretable aesthetic features for affective image classification. In: 20th IEEE International Conference on Image Processing(ICIP), pp. 3230–3234 (2013)

    Google Scholar 

  22. Xie, Q., Dai, Z., Hovy, E., Luong, T., Le, Q.: Unsupervised data augmentation for consistency training. In: Advances in Neural Information Processing Systems, pp. 6256–6268 (2020)

    Google Scholar 

  23. Xiong, Y., Feng, Y., Wu, H., Kamigaito, H., Okumura, M.: Fusing label embedding into BERT: an efficient improvement for text classification. In: Association for Computational Linguistics, pp. 1743–1750 (2021)

    Google Scholar 

  24. Xu, N.: Analyzing multimodal public sentiment based on hierarchical semantic attentional network. In: International Conference on Intelligence and Security Informatics, pp. 152–154 (2017)

    Google Scholar 

  25. Xu, N., Mao, W.: MultiSentiNet: A deep semantic network for multimodal sentiment analysis. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 2399–2402 (2017)

    Google Scholar 

  26. Xu, N., Mao, W., Chen, G: A Co-memory network for multimodal sentiment analysis. In: The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 929–932 (2018)

    Google Scholar 

  27. Xu, N., Zeng, Z., Mao, W.: Reasoning with multimodal sarcastic tweets via modeling cross-modality contrast and semantic association. In: Association for Computational Linguistics, pp. 3777–3786 (2020)

    Google Scholar 

  28. Yang, J., She, D., Sun, M.: Joint image emotion classification and distribution learning via deep convolutional neural network. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 3266–3272 (2017)

    Google Scholar 

  29. Yang, X., Feng, S., Wang, D., Zhang, Y.: Image-text multimodal emotion classification via multi-view attentional network. IEEE Trans. Multimedia 23, 4014–4026 (2021)

    Article  Google Scholar 

  30. Yang, X., Feng, S., Zhang, Y., Wang, D.: Multimodal sentiment detection based on multi-channel graph neural networks. In: Association for Computational Linguistics, pp. 328–339 (2021)

    Google Scholar 

  31. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. In: Association for Computational Linguistics, pp. 1480–1489 (2016)

    Google Scholar 

  32. You, Q., Jin, H., Luo, J.: Visual sentiment analysis by attending on local image regions. In: 31st AAAI Conference on Artificial Intelligence, pp. 231–237 (2017)

    Google Scholar 

  33. Yu, J., Jiang, J., Xia, R.: Entity-sensitive attention and fusion network for entity-level multimodal sentiment classification. IEEE/ACM Trans. Audio Speech Lang. Process. 28, 429–439 (2020)

    Article  MATH  Google Scholar 

  34. Zhai, X., Peng, Y., Xiao, J.: Learning cross-media joint representation with sparse and semisupervised regularization. Trans. Circuits Syst. Video Technol. 24(6), 1–1 (2014)

    MATH  Google Scholar 

  35. Zhou, P., Shi, W., Tian, J., Qi, Z., Li, B., Hao, H., Xu, B.: Attention-based bidirectional long short-term memory networks for relation classification. In: Association for Computational Linguistics, pp. 207–212 (2016)

    Google Scholar 

  36. Zhu, T., Li, L., Yang, J., Zhap, S., Liu, H., Qian, J.: Multimodal sentiment analysis with image-text interaction network. Trans. Multimed. 25, 3375–3385 (2023)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhua Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhan, C., Qian, W., Liu, P. (2025). EGSRNet: Emotion-Label Guiding and Similarity Reasoning Network for Multimodal Sentiment Analysis. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15035. Springer, Singapore. https://doi.org/10.1007/978-981-97-8620-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8620-6_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8619-0

  • Online ISBN: 978-981-97-8620-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics