[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Applications of Artificial Intelligence on Fuel Cells—Review

  • Conference paper
  • First Online:
Advances in Clean Energy Technologies (ICET 2023)

Abstract

Artificial intelligence (AI) is a rapidly developing technology that is already being used in a wide range of fields worldwide. The predominant use of AI as a technology is in the field of mechanical engineering. AI technology is a concept used in mechanical engineering areas like robotics, automation, and sensor technology. It is straightforward to conclude that mechanical engineering spreads the application and use of AI throughout the environment. This study discusses the artificial neural network (ANN) system, which is a part of AI, its application in the fuel cell field and describes how it works. This paper also discusses the implementation of infrared thermography (IRT), advanced and upcoming technology in polymer electrolyte membrane fuel cells (PEMFC). So forth, it elaborates on the structure of PEMFC and provides a brief overview of their operation. As a result of using IR and AI, we will have an even more efficient fuel cell that prevents the membrane from burning due to heat generation, as well as a self-controlling fuel cell machine that uses AI to avoid improper feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AI:

Artificial Intelligence

ANN:

Artificial Neural Network

AST:

Accelerated Stress Testing

BP:

Back Propagation

CFD:

Computational Fluid Dynamics

EMS:

Energy Management System

FC:

Fuel Cell

FFBPNN:

Feed Forward Back Propagation Neural Network

GMDHNN:

Group Method of Data Handling Neural Network

HNN:

Hybrid Neural Network

HOR:

Hydrogen Oxidation Reaction

IoT:

Internet of Things

IRT:

Infrared Thermography

MEA:

Membrane Electrode Assembly

MFC:

Microbial Fuel Cell

ML:

Machine Learning

MPR:

Multiplicative Polynomial Regression

ORR:

Oxygen Reduction Reaction

PEMFC:

Polymer Electrolyte Membrane Fuel Cell

Re LU:

Rectified Linear Unit

RBF:

Radial Basis Function

SOC:

State Of Charge

SVM:

Support Vector Machine

References

  1. S. Verma, S. Mishra, A. Gaur, S. Chowdhury, S. Mohapatra, G. Dwivedi, P. Verma, A comprehensive review on energy storage in hybrid electric vehicle. J. Traffic Transp. Eng. (Engl. Ed.) 8(5), 621–637 (2021)

    Google Scholar 

  2. M. Karthikeyan, M. Muthukumar, P. Karthikeyan, C. Mathan, Optimization of active area of proton exchange membrane fuel cell with better water management. J. Ceram. Process. Res. 20(5), 490–498 (2019)

    Article  Google Scholar 

  3. M. Marappan, R. Narayanan, K. Manoharan, M.K. Vijayakrishnan, K. Palanisamy, S. Karazhanov, S. Sundaram, Scaling up studies on PEMFC using a modified serpentine flow field incorporating porous sponge inserts to observe water molecules. Molecules 26(2), 286 (2021)

    Article  Google Scholar 

  4. S. Praveenkumar, S. Baskar, M. Muthukumar, Intensification of proton conductivity through polymer electrolytic membrane using novel electrode pattern. J. Indian Chem. Soc. 99(3), 100383 (2022)

    Article  Google Scholar 

  5. S.C. Kishore, S. Perumal, R. Atchudan, M. Alagan, A.K. Sundramoorthy, Y.R. Lee, A critical review on artificial intelligence for fuel cell diagnosis. Catalysts 12(7), 743 (2022)

    Google Scholar 

  6. L. Vichard, F. Harel, A. Ravey, P. Venet, D. Hissel, Degradation prediction of PEM fuel cell based on artificial intelligence. Int. J. Hydrogen Energy 45(29), 14953–14963 (2020)

    Google Scholar 

  7. Y. Ma, Q. Liu, Real-time application optimization control algorithm for energy management strategy of the hybrid power system based on artificial intelligence. Mob. Inf. Syst. 2021 (2021)

    Google Scholar 

  8. A. Gyaneshwar, S.K. Selvaraj, T. Ghimire, S.J. Mishra, S. Gupta, U. Chadha, M. Manoharan, V. Paramasivam, A survey of applications of MFC and recent progress of artificial intelligence and machine learning techniques and applications with competing fuel cells. Eng. Res. Express 4(2) (2022)

    Google Scholar 

  9. A. Sai Ramesh, S. Vigneshwar, S. Vickram, S. Manikandan, R. Subbaiyad, N. Karmegame, W. Kim, Artificial intelligence driven hydrogen and battery technologies. Fuel 337, 126862 (2022)

    Google Scholar 

  10. S.S. Kamran, A. Haleem, S. Bahl, M. Javaid, C. Prakash, D. Bhudhhi, Artificial intelligence and advanced materials in automotive industry: potential applications and perspectives. Mater. Today Proc. 62(6), 4207–4214 (2022)

    Google Scholar 

  11. Z. Yang, B. Wang, X. Sheng, Y. Wang, Q. Ren, S. He, J. Xuan, K. Jiao, An artificial intelligence solution for predicting short-term degradation behaviors of proton exchange membrane fuel cell. Appl. Sci. 11(14), 6348 (2021)

    Article  Google Scholar 

  12. K. Belmokhtar, M. Ldoumbia, K. Agboussou, PEM fuel cell modeling using artificial neural network (ANN). Int. J. Renew. Energy Res. 4(3), 725–730 (2014)

    Google Scholar 

  13. A. Saengrung, A. Abtahi, A. Zilouchian, Neural network model for a commercial PEM fuel cell system. J. Power Sources 172(2), 749–759 (2007)

    Article  Google Scholar 

  14. M. Hatti, M. Tioursi, Dynamic neural network controller model of PEM fuel cell system. Int. J. Hydrogen Energy 34(11), 5015–5021 (2009)

    Article  Google Scholar 

  15. S. Ou, L.E.K. Achenie, A hybrid neural network model for PEM fuel cells. J. Power Sources 140(2), 319–330 (2004)

    Google Scholar 

  16. A. Guarino, G. Spagnuolo, Automatic features extraction of faults in PEM fuel cells by a Siamese artificial neural network. Int. J. Hydrogen Energy 46(70), 34854–34866 (2021)

    Article  Google Scholar 

  17. A.U. Chávez-Ramírez, R. Muñoz-Guerrero, S.M. Durón Torres, M. Ferraro, G. Brunaccini, F. Sergi, V. Antonuccib, L.G. Arriaga, High power fuel cell simulator based on artificial neural network. Int. J. Hydrogen Energy 35(21), 12125–12133 (2009)

    Google Scholar 

  18. Y.S. Bhagavatula, M.T. Bhagavatula, K.S. Dhathathreyan, Application of artificial neural network in performance prediction of PEM fuel cell. Int. J. Energy Res. 36(13), 1215–1225 (2011)

    Article  Google Scholar 

  19. T. Wilberforce, A.G. Olabi, Proton exchange membrane fuel cell performance prediction using artificial neural network. Int. J. Hydrogen Energy 46(8), 6037–6050 (2021)

    Google Scholar 

  20. R. Sankarganesh, C. Jayamani, Nonlinear model predictive control for the energy management of fuel cell hybrid electric vehicle in real time using IoT. Energy 54(12), 0493–2137 (2021)

    Google Scholar 

  21. H. Pourrahmani, A. Yavarinasab, R. Zahedi, A. Gharehghani, M.H. Mohammadi, P. Bastani, J. Van Herle, The application of internet of things in the automotive industry: a review of the batteries, fuel cells, and engines. Internet Things 19, 100579 (2022)

    Google Scholar 

  22. B. Wang, B. Xie, J. Xuan, K. Jiao, AI-based optimization of PEM fuel cell catalyst layers for maximum power density via data-driven surrogate modeling. Energy Conserv. Manag. 205, 112460 (2020)

    Article  Google Scholar 

  23. G. Bender, W. Felt, M. Ulsh, Detecting and localizing failure points in proton exchange membrane fuel cells using IR thermography. J. Power Sources 253, 224–229 (2014)

    Article  Google Scholar 

  24. N.V. Aieta, P.K. Das, A. Perdue, G. Bender, A.M. Herring, A.Z. Weber, M.J. Ulsh, Applying infrared thermography as a quality-control tool for the rapid detection of polymer-37 electrolyte-membrane-fuel-cell catalyst-layer-thickness variations. J. Power Sources 211, 4–11 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Muthukumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muthukumar, M., Fasima Banu, B., Pranav Karthikeyan, A., Velayutham, P., Muthukaruppanasamy, V., Hema Sastigaa, V.M. (2025). Applications of Artificial Intelligence on Fuel Cells—Review. In: Dwivedi, G., Verma, P., Shende, V. (eds) Advances in Clean Energy Technologies. ICET 2023. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-97-6548-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-6548-5_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-6547-8

  • Online ISBN: 978-981-97-6548-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics