Abstract
The Hidden Number Problem (HNP) has found extensive applications in side-channel attacks against cryptographic schemes, such as ECDSA and Diffie-Hellman. There are two primary algorithmic approaches to solving the HNP: lattice-based attacks and Fourier analysis-based attacks. Lattice-based attacks exhibit better efficiency and require fewer samples when sufficiently long substrings of the nonces are known. However, they face significant challenges when only a small fraction of the nonce is leaked, such as 1-bit leakage, and their performance degrades in the presence of errors.
In this paper, we address an open question by introducing an algorithmic tradeoff that significantly bridges the gap between these two approaches. By introducing a parameter x to modify Albrecht and Heninger’s lattice, the lattice dimension is reduced by approximately \((\log _2{x})/ l\), where l represents the number of leaked bits. We present a series of new methods, including the interval reduction algorithm, several predicates, and the pre-screening technique. Furthermore, we extend our algorithms to solve the HNP with erroneous input. Our attack outperforms existing state-of-the-art lattice-based attacks against ECDSA. We obtain several records including 1-bit and less than 1-bit leakage on a 160-bit curve, while the best previous lattice-based attack for 1-bit leakage was conducted only on a 112-bit curve.
Yiming Gao and Jinghui Wang are the co-first authors of this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
In fact, the samples used in the lattice construction, the linear predicate, the interval reduction algorithm, and the prescreening technique are all distinct from each other.
References
Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: 33rd ACM STOC. pp. 601–610. (2001). https://doi.org/10.1145/380752.380857
Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W., Stevens, M.: The general sieve kernel and new records in lattice reduction. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 717-746. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_25
Albrecht, M.R., Heninger, N.: On bounded distance decoding with predicate: Breaking the “lattice barrier” for the hidden number problem. In: Canteaut, A., Standaert, FX. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 528-558. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_19
Albrecht, M.R., Heninger, N.: Bounded distance decoding with predicate sourcecode (2020). https://github.com/malb/bdd-predicate
Aranha, D.F., Fouque, PA., Gérard, B., Kammerer, JG., Tibouchi, M., Zapalowicz, JC.: GLV/GLS decomposition, power analysis, and attacks on ECDSA signatures with single-bit nonce bias. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 262-281. Springer, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_14
Aranha, D.F., Novaes, F.R., Takahashi, A., Tibouchi, M., Yarom, Y.: LadderLeak: Breaking ECDSA with less than one bit of nonce leakage. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 225-242. ACM Press (2020). https://doi.org/10.1145/3372297.3417268
Babai, L.: On Lovász lattice reduction and the nearest lattice point problem. Combinatorica 6, 1-13 (1986). https://doi.org/10.1007/BF02579403
Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor searching with applications to lattice sieving. In: Krauthgamer, R. (ed.) 27th SODA, pp. 10-24. ACM-SIAM (2016).https://doi.org/10.1137/1.9781611974331.ch2
Becker, A., Gama, N., Joux, A.: Speeding-up lattice sieving without increasing the memory, using sub-quadratic nearest neighbor search. Cryptology ePrint Archive, Report 2015/522 (2015). http://eprint.iacr.org/2015/522
Bleichenbacher, D.: On the generation of one-time keys in DL signature schemes. Presentation at IEEE P1363 Working Group Meeting (2000)
Bleichenbacher, D.: Experiments with DSA. Rump session at CRYPTO (2005). https://www.iacr.org/conferences/crypto2005/r/3.pdf
Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of secret keys in Diffie-Hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO 96. LNCS, vol. 1109, pp. 129-142. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_11
Breitner, J., Heninger, N.: Biased nonce sense: Lattice attacks against weak ECDSA signatures in cryptocurrencies. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp. 3-20. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-32101-7_1
De Mulder, E., Hutter, M., Marson, M.E., Pearson, P.: Using Bleichenbacher’s solution to the hidden number problem to attack nonce leaks in 384-bit ECDSA. In: Bertoni, G., Coron, J.S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 435-452. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-1_25
Ducas, L.: Shortest vector from lattice sieving: A few dimensions for free. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 125-145. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-78381-9_5
Ducas, L., Stevens, M., van Woerden, W.: Advanced lattice sieving on GPUs, with tensor cores. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 249-279. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_9
Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Mathematics of Computation 44(170), 463-471 (1985)
Fitzpatrick, R., Bischof, C., Buchmann, J., Dagdelen, Ö., Göpfert, F., Mariano, A., Yang, B.-Y.: Tuning GaussSieve for speed. In: LATINCRYPT 2014. LCNS, vol. 8895, pp. 288-305. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-16295-9_16
Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257-278. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_13
Heninger, N.: Using Lattices for Cryptanalysis. (2020). https://simons.berkeley.edu/-talks/using-lattices-cryptanalysis
Herold, G., Kirshanova, E., Laarhoven, T. : Speed-ups and time-memory trade-offs for tuple lattice sieving. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol 10769, pp.407-436. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_14
Jancar, J., Sedlacek, V., Svenda, P., Sys, M.: Minerva: The curse of ECDSA nonces. IACR TCHES 2020(4), 281-308 (2020). https://doi.org/10.13154/tches.v2020.i4.281-308
Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415-440 (1987). https://doi.org/10.1287/moor.12.3.415
Laarhoven, T.: Sieving for shortest vectors in lattices using angular locality-sensitive hashing. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 3-22. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_1
Laarhoven, T., Mariano, A.: Progressive lattice sieving. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 292-311. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-79063-3_14
Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 366-389 (1982). https://infoscience.epfl.ch/record/164484/files/nscan4.PDF
Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest vector problem. In: Charika, M. (ed.) 21st SODA. pp. 1468-1480. ACM-SIAM (2010). https://doi.org/10.1137/1.9781611973075.119
Moghimi, D., Sunar, B., Eisenbarth, T., Heninger, N.: TPM-FAIL: TPM meets timing and lattice attacks. In: Capkun, S., Roesner, F. (eds.): USENIX Security 2020. pp. 2057-2073. (2020). https://www.usenix.org/system/files/sec20-moghimi-tpm.pdf
Nguyen, P.Q., Shparlinski, I.: The insecurity of the digital signature algorithm with partially known nonces. Journal of Cryptology 15(3), 151-176 (2002). https://doi.org/10.1007/s00145-002-0021-3
Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are practical. J. of Mathematical Cryptology 2(2), 181-207 (2008). https://doi.org/10.1515/JMC.2008.009
Ryan, K.: Return of the hidden number problem. IACR TCHES 2019(1), 146-168 (2018). https://tches.iacr.org/index.php/TCHES/article/view/7337
Schnorr, C.P. : Lattice reduction by random sampling and birthday methods. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145-156. Springer, Berlin, Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3_14
Schnorr, C., Euchner, M.: Lattice basis reduction: Improved practical algorithms and solving subset sum problems. Math. Program. 66, 181-199 (1994). https://doi.org/10.1007/BF01581144
Sun, C., Espitau, T., Tibouchi, M., Abe, M.: Guessing bits: Improved lattice attacks on (EC)DSA with nonce leakage. IACR TCHES 2022(1), 391-413 (2022). https://tches.iacr.org/index.php/TCHES/article/view/9302
Takahashi, A., Tibouchi, M., Abe, M.: New Bleichenbacher records: Fault attacks on qDSA signatures. IACR TCHES 2018(3), 331-371 (2018). https://tches.iacr.org/index.php/TCHES/article/view/7278
The G6K development team: G6K (2020). https://github.com/fplll/g6k
The G6k-GPU-Tensor development team: G6k-GPU-Tensor (2021). https://github.com/WvanWoerden/G6K-GPU-Tensor
Xu, L., Dai, Z., Wu, B., Lin, D.: Improved attacks on (EC)DSA with nonce leakage by lattice sieving with predicate. IACR TCHES 2023(2), 568-586 (2023). https://doi.org/10.46586/tches.v2023.i2.568-586
Acknowledgements
We would like to thank the anonymous reviewers of ASIACRYPT 2024, EUROCRYPT 2024 and CRYPTO 2024 for their insightful suggestions. We also thank Fan Huang, Xiaolin Duan, Yaqi Wang, and Changhong Xu for their valuable support to this work. This work was supported by National Natural Science Foundation of China (Grant No. 62472397) and Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302902).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 International Association for Cryptologic Research
About this paper
Cite this paper
Gao, Y., Wang, J., Hu, H., He, B. (2025). Attacking ECDSA with Nonce Leakage by Lattice Sieving: Bridging the Gap with Fourier Analysis-Based Attacks. In: Chung, KM., Sasaki, Y. (eds) Advances in Cryptology – ASIACRYPT 2024. ASIACRYPT 2024. Lecture Notes in Computer Science, vol 15491. Springer, Singapore. https://doi.org/10.1007/978-981-96-0944-4_1
Download citation
DOI: https://doi.org/10.1007/978-981-96-0944-4_1
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-0943-7
Online ISBN: 978-981-96-0944-4
eBook Packages: Computer ScienceComputer Science (R0)