Abstract
Staphylococci are Gram-positive bacteria that have successfully evolved from a normal flora with limited threats to potentially life-threatening pathogens, particularly, Staphylococcus aureus. Species of staphylococci have adapted to survive under selective pressure mainly due to their ability to acquire mobile genetic elements (MGEs). Methicillin-resistant S. aureus is a common example of this successful evolution not only in hospital setting but also in the community. Recent literature supports that Coagulase-negative staphylococci including S. epidermidis are the reservoir for resistance as well as virulence-associated determinants for S. aureus. A wide range of MGEs are present in Staphylococci including genomic islands (GI), with staphylococcal chromosome cassette (SCCmec) as an example of the most common GI of medical importance, found in 15–20% of the S. aureus. The SCCmec are mobile entities that have been classified, so far into 14 types. Other GIs with similar characteristics to the SCC element is the Arginine Catabolic Mobile Element (ACME) and Copper and Mercury Resistance (COMER) that form a composite island with SCCmec IV, which have been first described in S. aureus USA-300 and in S. epidermidis as well. Other MGEs, include Insertion sequences and Transposons, plasmids, Integrative and conjugative elements (ICEs), and bacteriophages. MGEs have a significant survival advantage over their host species as these carry a wide variety of genes that confer resistance to antibiotics, heavy metals, and biocides.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alibayov B, Baba-Moussa L, Sina H, Zdeňková K, Demnerová K (2014) Staphylococcus aureus mobile genetic elements. Mol Biol Rep 41:5005–5018. https://doi.org/10.1007/s11033-014-3367-3
Al-Jabri Z, Al-Shabibi Z, Al-Bimani A, Al-Hinai A, Al-Shabibi A, Rizvi M (2021) Whole genome sequencing of methicillin-resistant Staphylococcus epidermidis clinical isolates reveals variable composite SCCmec ACME among different STs in a tertiary Care Hospital in Oman. Microorganisms 9(9):1824
Almebairik N, Zamudio R, Ironside C, Joshi C, Ralph JD, Roberts AP, Gould IM, Morrissey JA, Hijazi K, Oggioni MR (2020) Genomic stability of composite SCCmec ACME and COMER-like genetic elements in Staphylococcus epidermidis correlates with rate of excision. Front Microbiol 11:166. https://doi.org/10.3389/fmicb.2020.00166
Andersson DI (2006) The biological cost of mutational antibiotic resistance: any practical conclusions? Curr Opin Microbiol 9(5):461–465. https://doi.org/10.1016/j.mib.2006.07.002
Archer GL, Johnston JL (1983) Self-transmissible plasmids in staphylococci that encode resistance to aminoglycosides. Antimicrob Agents Chemother. https://journals.asm.org/journal/aac
Archer GL, Niemeyer DM, Thanassi JA, Pucci MJ (1994) Dissemination among Staphylococci of DNA sequences associated with methicillin resistance. Antimicrob Agents Chemother 38:3
Archer GL, Thanassi JA, Niemeyer DM, Pucci MJ (1996) Characterization of IS1272, an insertion sequence-like element from staphylococcus haemolyticus. Antimicrob Agents Chemother 40:4
Ayliffe GAJ (1997) The progressive intercontinental spread of methicillin-resistant Staphylococcus aureus. Clin Infect Dis 24(Supplement_1):S74–S79. https://doi.org/10.1093/clinids/24.Supplement_1.S74
Baig S, Johannesen TB, Overballe-Petersen S, Larsen J, Larsen AR, Stegger M (2018) Novel SCC mec type XIII (9A) identified in an ST152 methicillin-resistant Staphylococcus aureus. Infect Genet Evol 61:74–76. https://doi.org/10.1016/j.meegid.2018.03.013
Barbier F, Lebeaux D, Hernandez D, Delannoy A-S, Caro V, François P, Schrenzel J, Ruppé E, Gaillard K, Wolff M, Brisse S, Andremont A, Ruimy R (2011) High prevalence of the arginine catabolic mobile element in carriage isolates of methicillin-resistant Staphylococcus epidermidis. J Antimicrob Chemother 66:29–36. https://doi.org/10.1093/jac/dkq410
Barbier F, Ruppé E, Hernandez D, Lebeaux D, Francois P, Felix B, Desprez A, Maiga A, Woerther P, Gaillard K, Jeanrot C, Wolff M, Schrenzel J, Andremont A, Ruimy R (2010) Methicillin-resistant coagulase-negative staphylococci in the community: high homology of SCCmec IVa between Staphylococcus epidermidis and major clones of methicillin-resistant Staphylococcus aureus. J Infect Dis 202:270–281. https://doi.org/10.1086/653483
Barth PT, Datta N, Hedges RW, Grinter NJ (1976) Transposition of a deoxyribonucleic acid sequence encoding trimethoprim and streptomycin resistances from R483 to other replicons. J Bacteriol 125:3
Bender J, Strommenger B, Steglich M, Zimmermann O, Fenner I, Lensing C, Dagwadordsch U, Kekulé AS, Werner G, Layer F (2014) Linezolid resistance in clinical isolates of Staphylococcus epidermidis from German hospitals and characterization of two cfr-carrying plasmids. J Antimicrob Chemother 70(6):1630–1638. https://doi.org/10.1093/jac/dkv025
Berg T, Firth N, Apisiridej S, Hettiaratchi A, Leelaporn A, Skurray RA (1998) Complete nucleotide sequence of pSK41: evolution of staphylococcal conjugative multiresistance plasmids. J Bacteriol 180:17
Bertani G (1951) Studies on Lysogenesis I. The mode of phage liberation by lysogenic Escherichia Coli1. 293–300
Bertani LE (1980) Genetic interaction between the nip1 mutation and genes affecting integration and excision in phage P2. Mol Gen Genet MGG 178(1):91–99. https://doi.org/10.1007/BF00267217
Boundy S, Safo MK, Wang L, Musayev FN, O’Farrell HC, Rife JP, Archer GL (2013) Characterization of the Staphylococcus aureus rRNA methyltransferase encoded by orfX, the gene containing the staphylococcal chromosome cassette mec (SCCmec) insertion site. J Biol Chem 288:132–140. https://doi.org/10.1074/jbc.M112.385138
Briani F, Dehò G, Forti F, Ghisotti D (2001) The plasmid status of satellite bacteriophage P4. Plasmid 45(1):1–17). Academic Press Inc. https://doi.org/10.1006/plas.2000.1497
Brisson-Noel A, Delrieull P, Samainli D, & Courvalins P (1988) The journal of biological chemistry inactivation of lincosaminide antibiotics in staphylococcus identification of lincosaminide 0-nucleotidyltransferases and comparison of the corresponding resistance genes* (Vol. 263, Issue 31)
Brouwer MSM, Mullany P, Roberts AP (2010) Characterization of the conjugative transposon Tn6000 from Enterococcus casseliflavus 664.1H1 (formerly Enterococcus faecium 664.1H1). FEMS Microbiol Lett 309(1):71–76. https://doi.org/10.1111/j.1574-6968.2010.02018.x
Bruce KD (1997) Analysis of mer gene subclasses within bacterial communities in soils and sediments resolved by fluorescent-PCR-restriction fragment length polymorphism profiling. Appl Environ Microbiol 63:4914–4919. https://doi.org/10.1128/aem.63.12.4914-4919.1997
Brüssow H, Canchaya C, Hardt W-D (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68(3):560–602. https://doi.org/10.1128/mmbr.68.3.560-602.2004
Carraro N, Burrus V (2015) The dualistic nature of integrative and conjugative elements. Mob Genet Elem 5(6):98–102. https://doi.org/10.1080/2159256x.2015.1102796
Caryl JA, Smith MCA, Thomas CD (2004) Reconstitution of a staphylococcal plasmid-protein relaxation complex in vitro. J Bacteriol 186(11):3374–3383. https://doi.org/10.1128/JB.186.11.3374-3383.2004
Cherifi S, Byl B, Deplano A, Nonhoff C, Denis O, Hallin M (2013) Comparative epidemiology of Staphylococcus epidermidis isolates from patients with catheter-related Bacteremia and from healthy volunteers. J Clin Microbiol 51:1541–1547. https://doi.org/10.1128/JCM.03378-12
Chiang YN, Penadés JR, Chen J (2019) Genetic transduction by phages and chromosomal islands: the new and noncanonical. PLoS Pathog 15:8. https://doi.org/10.1371/journal.ppat.1007878
Chongtrakool P, Ito T, Ma XX, Kondo Y, Trakulsomboon S, Tiensasitorn C, Jamklang M, Chavalit T, Song J-H, Hiramatsu K (2006) Staphylococcal cassette chromosome mec (SCC mec ) typing of methicillin-resistant Staphylococcus aureus strains isolated in 11 Asian countries: a proposal for a new nomenclature for SCC mec elements. Antimicrob Agents Chemother 50:1001–1012. https://doi.org/10.1128/AAC.50.3.1001-1012.2006
Christie GE, Dokland T (2012) Pirates of the Caudovirales. Virology 434(2):210–221. https://doi.org/10.1016/j.virol.2012.10.028
Ciusa ML, Furi L, Knight D, Decorosi F, Fondi M, Raggi C, Coelho JR, Aragones L, Moce L, Visa P, Freitas AT, Baldassarri L, Fani R, Viti C, Orefici G, Martinez JL, Morrissey I, Oggioni MR (2012) A novel resistance mechanism to triclosan that suggests horizontal gene transfer and demonstrates a potential selective pressure for reduced biocide susceptibility in clinical strains of Staphylococcus aureus. Int J Antimicrob Agents 40(3):210–220. https://doi.org/10.1016/j.ijantimicag.2012.04.021
Clark NC, Weigel LM, Patel JB, Tenover FC (2005) Comparison of Tn1546-like elements in vancomycin-resistant Staphylococcus aureus isolates from Michigan and Pennsylvania. Antimicrob Agents Chemother 49(1):470–472. https://doi.org/10.1128/AAC.49.1.470-472.2005
Climo MW, Sharma VK, Archer GL (1996) Identification and characterization of the origin of conjugative transfer (oriT) and a gene (nes) encoding a single-stranded endonuclease on the staphylococcal plasmid pGO1. J Bacteriol 178:16. https://journals.asm.org/journal/jb
Cochetti I, Tili E, Mingoia M, Varaldo PE, Montanari MP (2008) erm(B)-carrying elements in tetracycline-resistant pneumococci and correspondence between Tn1545 and Tn6003. Antimicrob Agents Chemother 52(4):1285–1290. https://doi.org/10.1128/AAC.01457-07
Coelho JR, Carriço JA, Knight D, Martínez JL, Morrissey I, Oggioni MR, Freitas AT (2013) The use of machine learning methodologies to analyse antibiotic and biocide susceptibility in Staphylococcus aureus. PLoS One 8:2. https://doi.org/10.1371/journal.pone.0055582
Cohen S, Sweeney HM (1970) Transduction of methicillin resistance in Staphylococcus aureus dependent on an unusual specificity of the recipient strain. J Bacteriol 104:1158–1167. https://doi.org/10.1128/jb.104.3.1158-1167.1970
Cury J, Touchon M, Rocha EPC (2017) Integrative and conjugative elements and their hosts: composition, distribution and organization. Nucleic Acids Res 45(15):8943–8956. https://doi.org/10.1093/nar/gkx607
Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364. https://doi.org/10.1128/MMBR.00031-07
Deeny SR, Worby CJ, Tosas Auguet O, Cooper BS, Edgeworth J, Cookson B, Robotham JV (2015) Impact of mupirocin resistance on the transmission and control of healthcare-associated MRSA. J Antimicrob Chemother 70(12):3366–3378. https://doi.org/10.1093/jac/dkv249
Dehò G, Ghisotti D (2006) The satellite phage P4. The Bacteriophages:391–408
Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, Lin F, Lin J, Carleton HA, Mongodin EF, Sensabaugh GF, Perdreau-Remington F (2006) Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367(9512):731–739. https://doi.org/10.1016/S0140-6736(06)68231-7
Diep BA, Stone GG, Basuino L, Graber CJ, Miller A, des Etages SA, Jones A, Palazzolo-Ballance AM, Perdreau-Remington F, Sensabaugh GF, DeLeo FR, Chambers HF (2008) The arginine catabolic mobile element and staphylococcal chromosomal cassette mec linkage: convergence of virulence and resistance in the USA300 clone of methicillin-resistant Staphylococcus aureus. J Infect Dis 197(11):1523–1530. https://doi.org/10.1086/587907
Dionisio F, Zilhão R, Gama JA (2019) Interactions between plasmids and other mobile genetic elements affect their transmission and persistence. Plasmid 102:29–36). Academic Press Inc. https://doi.org/10.1016/j.plasmid.2019.01.003
Dokland T (2019) Molecular piracy: redirection of bacteriophage capsid assembly by mobile genetic elements. Viruses 11(11):1003. https://doi.org/10.3390/v11111003
Dowell CE, Rosenblum ED (1962) Serology and transduction in staphylococcal phage. J Bacteriol 84(5):1071–1075. https://doi.org/10.1128/jb.84.5.1071-1075.1962
Dy RL, Przybilski R, Semeijn K, Salmond GPC, Fineran PC (2014) A widespread bacteriophage abortive infection system functions through a type IV toxin–antitoxin mechanism. Nucleic Acids Res 42:4590–4605. https://doi.org/10.1093/nar/gkt1419
Enright AJ, van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30:7. www.ensembl.org
Evans J, Dyke KGH (1988) Characterization of the conjugation system associated with the Staphylococcus aureus plasmid pJE1. Microbiology 134(1):1–8
Fillol-Salom A, Bacarizo J, Alqasmi M, Ciges-Tomas JR, Martínez-Rubio R, Roszak AW, Cogdell RJ, Chen J, Marina A, Penadés JR (2019) Hijacking the hijackers: Escherichia coli Pathogenicity Islands redirect helper phage packaging for their own benefit. Mol Cell 75(5):1020–1030.e4. https://doi.org/10.1016/j.molcel.2019.06.017
Fillol-Salom A, Martínez-Rubio R, Abdulrahman RF, Chen J, Davies R, Penadés JR (2018) Phage-inducible chromosomal islands are ubiquitous within the bacterial universe. ISME J 12(9):2114–2128. https://doi.org/10.1038/s41396-018-0156-3
Firth N, Skurray RA (2006) Genetics: accessory elements and genetic exchange. In: Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Rood JI (eds) Gram-positive pathogens, 2nd edn. Wiley. https://doi.org/10.1128/9781555816513.ch33
Foster T (1996) Medical microbiology, 4th edn. University of Texas Mediacl Branch at Galveston
Furi L, Haigh R, Al Jabri ZJH, Morrissey I, Ou HY, León-Sampedro R, Martinez JL, Coque TM, Oggioni MR (2016) Dissemination of novel antimicrobial resistance mechanisms through the insertion sequence mediated spread of metabolic genes. Front Microbiol 7(JUN). https://doi.org/10.3389/fmicb.2016.01008
Gennaro ML, Kornblum J, Novick RP (1987) A site-specific recombination function in Staphylococcus aureus plasmids. J Bacteriol 169:6. https://journals.asm.org/journal/jb
Gilbart J, Perry CR, Slocombe B (1993) High-level mupirocin resistance in Staphylococcus aureus: evidence for two distinct Isoleucyl-tRNA synthetases. Antimicrob Agents Chemother 37:1
Goering RV, Ruff EA (1983) Comparative analysis of conjugative plasmids mediating gentamicin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 24:3. https://journals.asm.org/journal/aac
Grandgirard D, Furi L, Ciusa ML, Baldassarri L, Knight DR, Morrissey I, Largiadèr CR, Leib SL, Oggioni MR (2015) Mutations upstream of fabI in triclosan resistant Staphylococcus aureus strains are associated with elevated fabI gene expression. BMC Genomics 16:1. https://doi.org/10.1186/s12864-015-1544-y
Granslo HN, Klingenberg C, Fredheim EGA, Rønnestad A, Mollnes TE, Flægstad T (2010) Arginine catabolic mobile element is associated with low antibiotic resistance and low pathogenicity in Staphylococcus epidermidis from neonates. Pediatr Res 68:237–241. https://doi.org/10.1203/PDR.0b013e3181eb01e0
Gregory PD, Lewis RA, Curnock SP, Dyke KGH (1997) Studies of the repressor (BlaI) of β-lactamase synthesis in Staphylococcus aureus. Mol Microbiol 24(5):1025–1037. https://doi.org/10.1046/j.1365-2958.1997.4051770.x
Haaber J, Penadés JR, Ingmer H (2017) Transfer of antibiotic resistance in Staphylococcus aureus. Trends Microbiol 25:893–905. https://doi.org/10.1016/j.tim.2017.05.011
Hartman BJ, Tomasz A (1984) Low-affinity penicillin-binding protein associated with r-lactam resistance in Staphylococcus aureus. J Bacteriol 158:513–516. 0021-9193/84/050513-04$02.00/0
Hatfull GF, Hendrix RW (2011) Bacteriophages and their genomes. Curr Opin Virol 1(4):298–303). Elsevier B.V. https://doi.org/10.1016/j.coviro.2011.06.009
Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME, Rock CO (1999) Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J Biol Chem 274(16):11110–11114. https://doi.org/10.1074/jbc.274.16.11110
Hedges RW, Jacob AE (1974) Transposition of ampicillin resistance from RP4 to other replicons. Mol Gen Genet MGG 132(1):31–40
Helinski DR (2022) A brief history of plasmids. EcoSal Plus:eESP-0028
Herold BC (1998) Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA 279:593. https://doi.org/10.1001/jama.279.8.593
Hetem DJ, Bonten MJM (2013) Clinical relevance of mupirocin resistance in Staphylococcus aureus. In. J Hosp Infect 85(4):249–256. https://doi.org/10.1016/j.jhin.2013.09.006
Higgins PG, Rosato AE, Seifert H, Archer GL, Wisplinghoff H (2009) Differential expression of ccrA in methicillin-resistant Staphylococcus aureus strains carrying staphylococcal cassette chromosome mec type II and IVa elements. Antimicrob Agents Chemother 53:4556–4558. https://doi.org/10.1128/AAC.00395-09
Hijazi K, Mukhopadhya I, Abbott F, Milne K, Al-Jabri ZJ, Oggioni MR, Gould IM (2016) Susceptibility to chlorhexidine amongst multidrug-resistant clinical isolates of Staphylococcus epidermidis from bloodstream infections. Int J Antimicrob Agents 48(1):86–90. https://doi.org/10.1016/j.ijantimicag.2016.04.015
Horinouchit S, Weisblum B (1982a) Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J Bacteriol
Horinouchit S, Weisblum B (1982b) Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotics. J Bacteriol 150:2
Hung W-C, Chen H-J, Lin Y-T, Tsai J-C, Chen C-W, Lu H-H, Tseng S-P, Jheng Y-Y, Leong KH, Teng L-J (2015) Skin commensal staphylococci may act as reservoir for Fusidic acid resistance genes. PLoS One 10:e0143106. https://doi.org/10.1371/journal.pone.0143106
Ito T, Katayama Y, Asada K, Mori N, Tsutsumimoto K, Tiensasitorn C, Hiramatsu K (2001) Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 45:14
Ito T, Katayama Y, Hiramatsu K (1999) Cloning and nucleotide sequence determination of the entire mec DNA of pre-methicillin-resistant Staphylococcus aureus N315. Antimicrob Agents Chemother 43:1449–1458. https://doi.org/10.1128/AAC.43.6.1449
Ito T, Ma XX, Takeuchi F, Okuma K, Yuzawa H, Hiramatsu K (2004) Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrob Agents Chemother 48:2637–2651. https://doi.org/10.1128/AAC.48.7.2637-2651.2004
Ito T, Okuma K, Ma XX, Yuzawa H, Hiramatsu K (2003) Insights on antibiotic resistance of Staphylococcus aureus from its whole genome: genomic island SCC. Drug Resist Updat 6(1):41–52). Churchill Livingstone. https://doi.org/10.1016/S1368-7646(03)00003-7
IWG-SCC, I.W.G. on the C. of S.C.C.E. (2009) Classification of Staphylococcal Cassette Chromosome mec (SCC mec ): Guidelines for Reporting Novel SCC mec Elements. Antimicrob. Agents Chemother. 53, 4961–4967. https://doi.org/10.1128/AAC.00579-09
Jaffe HW, Sweeney HM, Weinstein RA, Kabins SA, Nathan C, Cohen S (1982) Structural and phenotypic varieties of gentamicin resistance plasmids in hospital strains of Staphylococcus aureus and coagulase-negative staphylococci. Antimicrob Agents Chemother 21:5. https://journals.asm.org/journal/aac
Jensen SO, Lyon BR (2009) Genetics of antimicrobial resistance in Staphylococcus aureus. Future Microbiol 4(5):565–582. https://doi.org/10.2217/fmb.09.30
Kang CK, Cho JE, Choi YJ, Jung Y, Kim N-H, Kim C-J, Kim TS, Song K-H, Choe PG, Park WB, Bang J-H, Kim ES, Park KU, Park SW, Kim N-J, Oh M, Kim HB (2015) agr dysfunction affects staphylococcal cassette chromosome mec type-dependent clinical outcomes in methicillin-resistant Staphylococcus aureus Bacteremia. Antimicrob Agents Chemother 59:3125–3132. https://doi.org/10.1128/AAC.04962-14
Katayama Y, Ito T, Hiramatsu K (2000) A new class of genetic element, Staphylococcus Cassette Chromosome mec , Encodes Methicillin Resistance in Staphylococcus aureus. Antimicrob Agents Chemother 44:1549–1555. https://doi.org/10.1128/AAC.44.6.1549-1555.2000
Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, Cui L, Oguchi A, Aoki K, Nagai Y, Lian J, Ito T, Kanamori M, Matsumaru H, Maruyama A, Murakami H, Hosoyama A, Mizutani-Ui Y, Takahashi NK et al (2001) Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357(9264):1225–1240. https://doi.org/10.1016/S0140-6736(00)04403-2
Kwong SM, Ramsay JP, Jensen SO, Firth N (2017) Replication of staphylococcal resistance plasmids. Front Microbiol 8(NOV) Frontiers Media S.A. https://doi.org/10.3389/fmicb.2017.02279
Kwong SM, Skurray RA, Firth N (2004) Staphylococcus aureus multiresistance plasmid pSK41: analysis of the replication region, initiator protein binding and antisense RNA regulation. Mol Microbiol 51(2):497–509. https://doi.org/10.1046/j.1365-2958.2003.03843.x
Launay A, Ballard SA, Johnson PDR, Grayson ML, Lambert T (2006) Transfer of vancomycin resistance transposon Tn1549 from Clostridium symbiosum to Enterococcus spp. in the gut of gnotobiotic mice. Antimicrob Agents Chemother 50(3):1054–1062. https://doi.org/10.1128/AAC.50.3.1054-1062.2006
Lee JYH, Monk IR, Gonçalves da Silva A, Seemann T, Chua KYL, Kearns A, Hill R, Woodford N, Bartels MD, Strommenger B, Laurent F, Dodémont M, Deplano A, Patel R, Larsen AR, Korman TM, Stinear TP, Howden BP (2018) Global spread of three multidrug-resistant lineages of Staphylococcus epidermidis. Nat Microbiol 3:1175–1185. https://doi.org/10.1038/s41564-018-0230-7
León-Sampedro R, Novais C, Peixe L, Baquero F, Coque TM (2016) Diversity and evolution of the Tn5801-tet(M)-like integrative and conjugative elements among Enterococcus, streptococcus, and Staphylococcus. Antimicrob Agents Chemother 60(3):1736–1746. https://doi.org/10.1128/AAC.01864-15
Lindgren JK, Thomas VC, Olson ME, Chaudhari SS, Nuxoll AS, Schaeffer CR, Lindgren KE, Jones J, Zimmerman MC, Dunman PM, Bayles KW, Fey PD (2014) Arginine deiminase in Staphylococcus epidermidis functions to augment biofilm maturation through pH homeostasis. J Bacteriol 196:2277–2289. https://doi.org/10.1128/JB.00051-14
Lindsay JA (2010) Genomic variation and evolution of Staphylococcus aureus. Int J Med Microbiol 300:98–103. https://doi.org/10.1016/j.ijmm.2009.08.013
Lindsay JA (2014) Staphylococcus aureus genomics and the impact of horizontal gene transfer. Int J Med Microbiol 304(2):103–109. https://doi.org/10.1016/j.ijmm.2013.11.010
Lindsay JA, Ruzin A, Ross HF, Kurepina N, Novick RP (1998) The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol Microbiol 29(2):527–543. https://doi.org/10.1046/j.1365-2958.1998.00947.x
Littlejohn TG, DiBerardino D, Messerotti LJ, Spiers SJ, Skurray RA (1991) Structure and evolution of a family of genes encoding antiseptic and disinfectant resistance in Staphylococcus aureus. Gene 101(1):59–66. https://doi.org/10.1016/0378-1119(91)90224-Y
Liu P, Wu Z, Xue H, Zhao X (2017) Antibiotics trigger initiation of SCCmec transfer by inducing SOS responses. Nucleic Acids Res 45:3944–3952. https://doi.org/10.1093/nar/gkx153
Macrina FL, & Archer GL (1993) Conjugation and broad host range plasmids in streptococci and staphylococci. In Bacterial conjugation (pp. 313–329). Springer
Mahillon J, Chandler M (1998) Insertion Sequences. Microbiol Mol Biol Rev 62:3
Maillard JY, Bloomfield S, Coelho JR, Collier P, Cookson B, Fanning S, Hill A, Hartemann P, McBain AJ, Oggioni M, Sattar S, Schweizer HP, Threlfall J (2013) Does microbicide use in consumer products promote antimicrobial resistance? A critical review and recommendations for a cohesive approach to risk assessment. Microb Drug Resist 19(5):344–354. https://doi.org/10.1089/mdr.2013.0039
Makhlin J, Kofman T, Borovok I, Kohler C, Engelmann S, Cohen G, Aharonowitz Y (2007) Staphylococcus aureus ArcR controls expression of the arginine deiminase operon. J Bacteriol 189:5976–5986. https://doi.org/10.1128/JB.00592-07
Malachowa N, Deleo FR (2010) Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci 67(18):3057–3071. https://doi.org/10.1007/s00018-010-0389-4
Martínez-Rubio R, Quiles-Puchalt N, Martí M, Humphrey S, Ram G, Smyth D, Chen J, Novick RP, Penadés JR (2017) Phage-inducible islands in the Gram-positive cocci. ISME J 11(4):1029–1042. https://doi.org/10.1038/ismej.2016.163
McBain AJ, Forbes S, Latimer J (2012) Reply to “lack of evidence for reduced fitness of clinical staphylococcus aureus isolates with reduced susceptibility to triclosan.”. Antimicrob Agents Chemother 56(11):6072. https://doi.org/10.1128/AAC.01515-12
Mcelgunn CJ, Zahurul M, Bhuyian A, Sugiyama M (2002) Integration analysis of pSK41 in the chromosome of a methicillin-resistant Staphylococcus aureus K-1. J Basic Microbiol 42
McKenzie T, Hoshino T, Tanaka T, Sueoka N (1986) The nucleotide sequence of pUB110: some salient features in relation to replication and its regulation. Plasmid 15(2):93–103. https://doi.org/10.1016/0147-619X(86)90046-6
McManus BA, Coleman DC, Deasy EC, Brennan GI, O’Connell B, Monecke S, Ehricht R, Leggett B, Leonard N, Shore AC (2015) Comparative genotypes, staphylococcal cassette chromosome mec (SCCmec) genes and antimicrobial resistance amongst Staphylococcus epidermidis and Staphylococcus haemolyticus isolates from infections in humans and companion animals. PLoS One 10(9):e0138079. https://doi.org/10.1371/journal.pone.0138079
McManus BA, O’Connor AM, Kinnevey PM, O’Sullivan M, Polyzois I, Coleman DC (2017) First detailed genetic characterization of the structural organization of type III arginine catabolic mobile elements harbored by Staphylococcus epidermidis by using whole-genome sequencing. Antimicrob Agents Chemother 61(10):e01216–e01217. https://doi.org/10.1128/AAC.01216-17
Miragaia M, de Lencastre H, Perdreau-Remington F, Chambers HF, Higashi J, Sullam PM, Lin J, Wong KI, King KA, Otto M, Sensabaugh GF, Diep BA (2009) Genetic diversity of arginine catabolic mobile element in Staphylococcus epidermidis. PLoS One 4:e7722. https://doi.org/10.1371/journal.pone.0007722
Misiura A, Pigli YZ, Boyle-Vavra S, Daum RS, Boocock MR, Rice PA (2013) Roles of two large serine recombinases in mobilizing the methicillin-resistance cassette SCC mec: roles of the SCCmec recombinases. Mol Microbiol 88:1218–1229. https://doi.org/10.1111/mmi.12253
Mojumdart M, Khan SA (1988) Characterization of the tetracycline resistance gene of plasmid pTl81 of Staphylococcus aureus. J Bacteriol 170:12. https://journals.asm.org/journal/jb
Monecke S, Jatzwauk L, Müller E, Nitschke H, Pfohl K, Slickers P, Reissig A, Ruppelt-Lorz A, Ehricht R (2016) Diversity of SCCmec elements in Staphylococcus aureus as observed in South-Eastern Germany. PLoS One 11:e0162654. https://doi.org/10.1371/journal.pone.0162654
Morrissey I, Oggioni MR, Knight D, Curiao T, Coque T, Kalkanci A, Martinez JL, Baldassarri L, Orefici G, Yetiş Ü, Rödger HJ, Visa P, Mora D, Leib S, Viti C (2014) Evaluation of epidemiological cut-off values indicates that biocide resistant subpopulations are uncommon in natural isolates of clinically-relevant microorganisms. PLoS One 9:1. https://doi.org/10.1371/journal.pone.0086669
Morton TM, Linda JJ, Patterson J, Archer GL (1995) Characterization of a conjugative staphylococcal mupirocin resistance plasmid. Antimicrob Agents Chemother 39:6
Naas T, Fortineau N, Spicq C, Robert J, Jarlier V, Nordmann P (2005) Three-year survey of community-acquired methicillin-resistant Staphylococcus aureus producing Panton-valentine leukocidin in a French university hospital. J Hosp Infect 61:321–329. https://doi.org/10.1016/j.jhin.2005.01.027
Naimi TS (2003) Comparison of community- and health care–associated methicillin-resistant Staphylococcus aureus infection. JAMA 290:2976. https://doi.org/10.1001/jama.290.22.2976
Needham C, Noble WC, Dyke KGH (1995) The staphylococcal insertion sequence IS257 is active. Plasmid 34
Néron B, Ménager H, Maufrais C, Joly N, Maupetit J, Letort S, Carrere S, Tuffery P, Letondal C (2009) Mobyle: a new full web bioinformatics framework. Bioinformatics 25(22):3005–3011. https://doi.org/10.1093/bioinformatics/btp493
Nilsson AS, Karlsson JL, Haggård-Ljungquist E (2004) Site-specific recombination links the evolution of P2-like coliphages and pathogenic enterobacteria. Mol Biol Evol 21(1):1–13. https://doi.org/10.1093/molbev/msg223
Noto MJ, Kreiswirth BN, Monk AB, Archer GL (2008) Gene acquisition at the insertion site for SCC mec , the Genomic Island conferring methicillin resistance in Staphylococcus aureus. J Bacteriol 190:1276–1283. https://doi.org/10.1128/JB.01128-07
Novick RP (1963) Analysis by transduction of mutations affecting penicillinase formation. J Gen Microbiol 33:121–136. https://doi.org/10.1099/00221287-33-1-121
Novick RP, Christie GE, Penadés JR (2010) The phage-related chromosomal islands of gram-positive bacteria. Nat Rev Microbiol 8(8):541–551. https://doi.org/10.1038/nrmicro2393
Novick RP, Iordanescu S, Projan SJ, Kornblum J, Edelman I (1989) pT181 plasmid replication is regulated by a countertranscript-driven transcriptional attenuator. Cell 59(2):395–404. https://doi.org/10.1016/0092-8674(89)90300-0
Novick RP, Ram G (2017) Staphylococcal pathogenicity islands—movers and shakers in the genomic firmament. Curr Opin Microbiol 38:197–204). Elsevier Ltd. https://doi.org/10.1016/j.mib.2017.08.001
O’Brien FG, Ramsay JP, Monecke S, Coombs GW, Robinson OJ, Htet Z, Alshaikh FAM, Grubb WB (2015) Staphylococcus aureus plasmids without mobilization genes are mobilized by a novel conjugative plasmid from community isolates. J Antimicrob Chemother 70(3):649–652. https://doi.org/10.1093/jac/dku454
O’Connor AM, McManus BA, Coleman DC (2018a) First description of novel arginine catabolic mobile elements (ACMEs) types IV and V harboring a kdp operon in Staphylococcus epidermidis characterized by whole genome sequencing. Infect Genet Evol 61:60–66. https://doi.org/10.1016/j.meegid.2018.03.012
O’Connor AM, McManus BA, Kinnevey PM, Brennan GI, Fleming TE, Cashin PJ, O’Sullivan M, Polyzois I, Coleman DC (2018b) Significant enrichment and diversity of the staphylococcal arginine catabolic mobile element ACME in Staphylococcus epidermidis isolates from subgingival peri-implantitis sites and periodontal pockets. Front Microbiol 9:1558. https://doi.org/10.3389/fmicb.2018.01558
Oggioni MR, Coelho JR, Furi L, Knight DR, Viti C, Orefici G, Martinez J-L, Freitas AT, Coque TM, Morrissey I (2015) Send orders for reprints to reprints@benthamscience.ae significant differences characterise the correlation coefficients between biocide and antibiotic susceptibility profiles in Staphylococcus aureus. Curr Pharm Des 21
Oggioni MR, Furi L, Coelho JR, Maillard JY, Martínez JL (2013) Recent advances in the potential interconnection between antimicrobial resistance to biocides and antibiotics. Expert Rev Anti-Infect Ther 11(4):363–366. https://doi.org/10.1586/eri.13.16
Onishi M, Urushibara N, Kawaguchiya M, Ghosh S, Shinagawa M, Watanabe N, Kobayashi N (2013) Prevalence and genetic diversity of arginine catabolic mobile element (ACME) in clinical isolates of coagulase-negative staphylococci: identification of ACME type I variants in Staphylococcus epidermidis. Infect Genet Evol 20:381–388. https://doi.org/10.1016/j.meegid.2013.09.018
Osborn AM, Bruce KD, Strike P, Ritchie DA (1997) Distribution, diversity and evolution of the bacterial mercury resistance ( mer ) operon. FEMS Microbiol Rev 19:239–262. https://doi.org/10.1111/j.1574-6976.1997.tb00300.x
Otto M (2004) Virulence factors of the coagulase-negative staphylococci. Front Biosci 9:841. https://doi.org/10.2741/1295
Otto M (2013) Coagulase-negative staphylococci as reservoirs of genes facilitating MRSA infection: Staphylococcal commensal species such as Staphylococcus epidermidis are being recognized as important sources of genes promoting MRSA colonization and. BioEssays 35:4–11. https://doi.org/10.1002/bies.201200112
Panesso D, Planet PJ, Diaz L, Hugonnet JE, Tran TT, Narechania A, Munita JM, Rincon S, Carvajal LP, Reyes J, Londoño A, Smith H, Sebra R, Deikus G, Weinstock GM, Murray BE, Rossi F, Arthur M, Arias CA (2015) Methicillin-susceptible, vancomycin-resistant staphylococcus aureus, Brazil. Emerg Infect Dis 21(10):1844–1848. https://doi.org/10.3201/eid2110.141914
Partridge SR, Kwong SM, Firth N, Jensen SO (2018) Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 31(4):e00088–17. https://doi.org/10.1128/CMR.00088-17
Paulsen IT, Gillespie MT, Littlejohn TG, Hanvivatvong O, Rowland S-J, Dyke KGH, Skurray RA (1994) Characterisation of sin, a potential recombinase-encoding gene from Staphylococcus aureus. Gene 141(1):109–114. https://doi.org/10.1016/0378-1119(94)90136-8
Penadés JR, Christie GE (2015) The phage-inducible Chromosomal Islands: a family of highly evolved molecular parasites. Ann Rev Virol 2:181–201). Annual Reviews Inc. https://doi.org/10.1146/annurev-virology-031413-085446
Pérez-Roth E, Kwong SM, Alcoba-Florez J, Firth N, Méndez-Álvarez S (2010) Complete nucleotide sequence and comparative analysis of pPR9, a 41.7-kilobase conjugative staphylococcal multiresistance plasmid conferring high-level mupirocin resistance. Antimicrob Agents Chemother 54(5):2252–2257. https://doi.org/10.1128/AAC.01074-09
Pérez-Roth E, López-Aguilar C, Alcoba-Florez J, Méndez-Álvarez S (2006) High-level mupirocin resistance within methicillin-resistant Staphylococcus aureus pandemic lineages. Antimicrob Agents Chemother 50(9):3207–3211. https://doi.org/10.1128/AAC.00059-06
Pinho MG, Filipe SR, de Lencastre H, Tomasz A (2001) Complementation of the essential peptidoglycan transpeptidase function of penicillin-binding protein 2 (PBP2) by the drug resistance protein PBP2A in Staphylococcus aureus. J Bacteriol 183:6525–6531. https://doi.org/10.1128/JB.183.22.6525-6531.2001
Planet PJ, Diaz L, Kolokotronis S-O, Narechania A, Reyes J, Xing G, Rincon S, Smith H, Panesso D, Ryan C, Smith DP, Guzman M, Zurita J, Sebra R, Deikus G, Nolan RL, Tenover FC, Weinstock GM, Robinson DA, Arias CA (2015) Parallel epidemics of community-associated methicillin-resistant Staphylococcus aureus USA300 infection in North and South America. J Infect Dis 212:1874–1882. https://doi.org/10.1093/infdis/jiv320
Planet PJ, Diaz L, Rios R, Arias CA (2016) Global spread of the community-associated methicillin-resistant Staphylococcus aureus USA300 Latin American variant. J Infect Dis 214:1609–1610. https://doi.org/10.1093/infdis/jiw418
Projan SJ, Archer GL (1989) Mobilization of the relaxable Staphylococcus aureus plasmid pC221 by the conjugative plasmid pGOl involves three pC221 loci. J Bacteriol 171:4. https://journals.asm.org/journal/jb
Purves J, Thomas J, Riboldi GP, Zapotoczna M, Tarrant E, Andrew PW, Londoño A, Planet PJ, Geoghegan JA, Waldron KJ, Morrissey JA (2018) A horizontally gene transferred copper resistance locus confers hyper-resistance to antibacterial copper toxicity and enables survival of community acquired methicillin resistant Staphylococcus aureus USA300 in macrophages: Staphylococcus aureus copper resistance and innate immunity. Environ Microbiol 20:1576–1589. https://doi.org/10.1111/1462-2920.14088
Quiles-Puchalt N, Carpena N, Alonso JC, Novick RP, Marina A, Penadés JR (2014a) Staphylococcal pathogenicity island DNA packaging system involving cos-site packaging and phage-encoded HNH endonucleases. Proc Natl Acad Sci U S A 111(16):6016–6021. https://doi.org/10.1073/pnas.1320538111
Quiles-Puchalt N, Martínez-Rubio R, Ram G, Lasa I, Penadés JR (2014b) Unravelling bacteriophage φ11 requirements for packaging and transfer of mobile genetic elements in Staphylococcus aureus. Mol Microbiol 91(3):423–437. https://doi.org/10.1111/mmi.12445
Roberts AP, Mullany P (2011) Tn916-like genetic elements: a diverse group of modular mobile elements conferring antibiotic resistance. FEMS Microbiol Rev 35(5):856–871. https://doi.org/10.1111/j.1574-6976.2011.00283.x
Rolo J, Miragaia M, Turlej-Rogacka A, Empel J, Bouchami O, Faria NA, Tavares A, Hryniewicz W, Fluit AC, de Lencastre H, the CONCORD Working Group (2012) High genetic diversity among community-associated Staphylococcus aureus in Europe: results from a Multicenter study. PLoS One 7:e34768. https://doi.org/10.1371/journal.pone.0034768
Rolo J, Worning P, Boye Nielsen J, Sobral R, Bowden R, Bouchami O, Damborg P, Guardabassi L, Perreten V, Westh H, Tomasz A, de Lencastre H, Miragaia M (2017) Evidence for the evolutionary steps leading to mecA-mediated β-lactam resistance in staphylococci. PLoS Genet 13:e1006674. https://doi.org/10.1371/journal.pgen.1006674
Rosario-Cruz Z, Eletsky A, Daigham NS, Al-Tameemi H, Swapna GVT, Kahn PC, Szyperski T, Montelione GT, Boyd JM (2019) The copBL operon protects Staphylococcus aureus from copper toxicity: CopL is an extracellular membrane–associated copper-binding protein. J Biol Chem 294:4027–4044. https://doi.org/10.1074/jbc.RA118.004723
Rossi F, Diaz L, Wollam A, Panesso D, Zhou Y, Rincon S, Narechania A, Xing G, di Gioia TSR, Doi A, Tran TT, Reyes J, Munita JM, Carvajal LP, Hernandez-Roldan A, Brandão D, van der Heijden IM, Murray BE, Planet PJ et al (2014) Transferable vancomycin resistance in a community-associated MRSA lineage. N Engl J Med 370(16):1524–1531. https://doi.org/10.1056/nejmoa1303359
Rowland S-J, Stark Marshall W, Boocock Martin R (2002) Sin recombinase from Staphylococcus aureus:synaptic complex architecture and transposon targeting. Mol Microbiol 44(3):607–619. https://doi.org/10.1046/j.1365-2958.2002.02897.x
Sansevere EA, Luo X, Park JY, Yoon S, Seo KS, Robinson DA (2017) Transposase-mediated excision, conjugative transfer, and diversity of ICE6013 elements in Staphylococcus aureus. J Bacteriol 199:8. https://doi.org/10.1128/JB.00629-16
Sansevere EA, Robinson DA (2017) Staphylococci on ICE: overlooked agents of horizontal gene transfer. Mob Genet Elem 7(4):1–10. https://doi.org/10.1080/2159256x.2017.1368433
Scharn CR, Tenover FC, Goering RV (2013) Transduction of staphylococcal cassette chromosome mec elements between strains of Staphylococcus aureus. Antimicrob Agents Chemother 57:5233–5238. https://doi.org/10.1128/AAC.01058-13
Schweizer HP (2001) Triclosan: a widely used biocide and its link to antibiotics. FEMS Microbiol Lett 202(1):1–7. https://doi.org/10.1111/j.1574-6968.2001.tb10772.x
Shafer WM, Iandolo JJ (1979) Genetics of staphylococcal enterotoxin B in methicillin- resistant isolates of Staphylococcus aureust. Infect Immun 25:902–911. https://doi.org/0019-9567/79/09-0902/10$02.00/0
Shearer JES, Wireman J, Hostetler J, Forberger H, Borman J, Gill J, Sanchez S, Mankin A, LaMarre J, Lindsay JA, Bayles K, Nicholson A, O’Brien F, Jensen SO, Firth N, Skurray RA, Summers AO (2011) Major families of multiresistant plasmids from geographically and epidemiologically diverse staphylococci. G3: Genes, Genomes Genetics 1(7):581–591. https://doi.org/10.1534/g3.111.000760
Shore AC, Lazaris A, Kinnevey PM, Brennan OM, Brennan GI, O’Connell B, Feßler AT, Schwarz S, Coleman DC (2016) First report of cfr-carrying plasmids in the pandemic sequence type 22 methicillin-resistant Staphylococcus aureus staphylococcal cassette chromosome mec type IV clone. Antimicrob Agents Chemother 60(5):3007–3015. https://doi.org/10.1128/AAC.02949-15
Shore AC, Rossney AS, Brennan OM, Kinnevey PM, Humphreys H, Sullivan DJ, Goering RV, Ehricht R, Monecke S, Coleman DC (2011) Characterization of a novel arginine catabolic Mobile element (ACME) and staphylococcal chromosomal cassette mec composite Island with significant homology to Staphylococcus epidermidis ACME type II in methicillin-resistant Staphylococcus aureus genotype ST22-MRSA-IV. Antimicrob Agents Chemother 55:1896–1905. https://doi.org/10.1128/AAC.01756-10
Siguier P, Gagnevin L, Chandler M (2009) The new IS1595 family, its relation to IS1 and the frontier between insertion sequences and transposons. Res Microbiol 160(3):232–241. https://doi.org/10.1016/j.resmic.2009.02.003
Siguier P, Gourbeyre E, Chandler M (2014) Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev 38(5):865–891. https://doi.org/10.1111/1574-6976.12067
Siguier P, Gourbeyre E, Varani A, Ton-Hoang B, Chandler M (2015) Everyman’s guide to bacterial insertion sequences. Microbiol Spectrum 3:2. https://doi.org/10.1128/microbiolspec.mdna3-0030-2014
Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M (2006) ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34(Database issue). https://doi.org/10.1093/nar/gkj014
Six EW (1975) The helper dependence of satellite bacteriophage P4: which gene functions of bacteriophage P2 are needed by P4? Virology 67(1):249–263. https://doi.org/10.1016/0042-6822(75)90422-5
Six EW, Klug CAC (1973) Bacteriophage P4: a satellite virus depending on a helper such as prophage P2. Virology 51(2):327–344. https://doi.org/10.1016/0042-6822(73)90432-7
Slater-Radosti C, van Aller G, Greenwood R, Nicholas R, Keller PM, Dewolf WE, Fan F, Payne DJ, Jaworski DD (2001) Original articles biochemical and genetic characterization of the action of triclosan on Staphylococcus aureus. J Antimicrob Chemother 48
Smyth DS, Robinson DA (2009) Integrative and sequence characteristics of a novel genetic element, ICE6013, in Staphylococcus aureus. J Bacteriol 191(19):5964–5975. https://doi.org/10.1128/JB.00352-09
Stewart GC, Rosenblum ED (1980) Transduction of methicillin resistance in Staphylococcus aureus: recipient effectiveness and beta-lactamase production. Antimicrob Agents Chemother 18:424–432. https://doi.org/10.1128/AAC.18.3.424
Stojanov M, Moreillon P, Sakwinska O (2015) Excision of staphylococcal cassette chromosome mec in methicillin-resistant Staphylococcus aureus assessed by quantitative PCR. BMC Res Notes 8:828. https://doi.org/10.1186/s13104-015-1815-3
Thurlow LR, Joshi GS, Clark JR, Spontak JS, Neely CJ, Maile R, Richardson AR (2013) Functional modularity of the arginine catabolic mobile element contributes to the success of USA300 methicillin-resistant Staphylococcus aureus. Cell Host Microbe 13:100–107. https://doi.org/10.1016/j.chom.2012.11.012
Tolstoy I, Kropinski AM, Brister JR (2018) Bacteriophage taxonomy: an evolving discipline. In: Azeredo J, Sillankorva S (eds) Bacteriophage therapy: from lab to clinical practice. Springer, New York, pp 57–71. https://doi.org/10.1007/978-1-4939-7395-8_6
Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28:603–661. https://doi.org/10.1128/CMR.00134-14
Tonouchi N, Tsuchida T, Yoshinaga F, Horinouchi S, Beppu T (1994) A host–vector system for a cellulose-producing acetobacter strain. Biosci Biotechnol Biochem 58(10):1899–1901. https://doi.org/10.1271/bbb.58.1899
Townsend DE, Ashdown N, Grubb WB, Pearman JW, Annear DI (1985) Genetics and epidemiology of methicillin-resistant Staphylococcus aureus isolated in a Western Australian hospital. Med J Aust 142(2):108–111
Townsend DE, Bolton S, Ashdown N, Annear DI, Grubb WB (1986) Conjugative, staphylococcal plasmids carrying hitch-hiking transposons similar to Tn554: intra-and interspecies dissemination of erythromycin resistance. Aust J Exp Biol Med Sci 64(4):367–379
Tsvetkova K, Marvaud JC, Lambert T (2010) Analysis of the mobilization functions of the vancomycin resistance transposon Tn1549, a member of a new family of conjugative elements. J Bacteriol 192(3):702–713. https://doi.org/10.1128/JB.00680-09
Udo E, Townsend DE, Grubb WB (1987) A conjugative staphylococcal plasmid with no resistance phenotype. FEMS Microbiol Lett 40(2–3):279–283. https://doi.org/10.1111/j.1574-6968.1987.tb02039.x
Udo EE, Grubb WB (1990) Conjugal transfer of plasmid pWBG637 from Staphylococcus aureus to Staphylococcus epidermidis and Streptococcus faecalis. FEMS Microbiol Lett 72(1–2):183–187. https://doi.org/10.1111/j.1574-6968.1990.tb03886.x
Udo EE, Wei M-Q, Grubb WB (1992) Conjugative trimethoprim resistance in Staphylococcus aureus. FEMS Microbiol Lett 97(3):243–248. https://doi.org/10.1111/j.1574-6968.1992.tb05470.x
Ul Haq I, Chaudhry WN, Akhtar MN, Andleeb S, Qadri I (2012) Bacteriophages and their implications on future biotechnology: a review. Virol J 9. https://doi.org/10.1186/1743-422X-9-9
Urushibara N, Aung MS, Kawaguchiya M, Kobayashi N (2019) Novel staphylococcal cassette chromosome mec (SCCmec) type XIV (5A) and a truncated SCCmec element in SCC composite islands carrying speG in ST5 MRSA in Japan. J Antimicrob Chemother dkz406. https://doi.org/10.1093/jac/dkz406
Varani A, He S, Siguier P, Ross K, Chandler M (2021) The IS6 family, a clinically important group of insertion sequences including IS26. Mob DNA 12:1). BioMed Central Ltd. https://doi.org/10.1186/s13100-021-00239-x
Viana D, Blanco J, Tormo-Más MÁ, Selva L, Guinane CM, Baselga R, Corpa JM, Lasa Í, Novick RP, Fitzgerald JR, Penadés JR (2010) Adaptation of Staphylococcus aureus to ruminant and equine hosts involves SaPI-carried variants of von Willebrand factor-binding protein. Mol Microbiol 77(6):1583–1594. https://doi.org/10.1111/j.1365-2958.2010.07312.x
Walters JA, Dyke KGH (2006) Characterization of a small cryptic plasmid isolated from a methicillin-resistant strain of Staphylococcus aureus. FEMS Microbiol Lett 71(1–2):55–63. https://doi.org/10.1111/j.1574-6968.1990.tb03798.x
Wang L, Archer GL (2010) Roles of CcrA and CcrB in excision and integration of staphylococcal cassette chromosome mec , a Staphylococcus aureus Genomic Island. J Bacteriol 192:3204–3212. https://doi.org/10.1128/JB.01520-09
Wikoff WR, Liljas L, Duda RL, Tsuruta H, Hendrix RW, & Johnson JE (2000) Topologically linked protein rings in the bacteriophage HK97 Capsid. https://www.science.org
Wilson LK, Coombs GW, Christiansen K, Grubb WB, O’Brien FG (2016) Characterization of a novel staphylococcal cassette chromosome composite island from community-associated MRSA isolated in aged care facilities in Western Australia. J Antimicrob Chemother 71:3372–3375. https://doi.org/10.1093/jac/dkw317
Woodford N, Watson AP, Patel S, Jevon M, Waghorn DJ, Cookson BD (1998) Heterogeneous location of the mupA high4evel mupirocin resistance gene in staphylococcus aureus. J Med Microbiol-Vbl 47
Wu Z, Li F, Liu D, Xue H, Zhao X (2015) Novel type XII staphylococcal cassette chromosome mec harboring a new cassette chromosome recombinase, CcrC2. Antimicrob Agents Chemother 59:7597–7601. https://doi.org/10.1128/AAC.01692-15
Xia G, Wolz C (2014) Phages of Staphylococcus aureus and their impact on host evolution. Infect Genet Evol 21:593–601. https://doi.org/10.1016/j.meegid.2013.04.022
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
AL-Jabri, Z., AL-Mebairik, N. (2023). Genomic Islands in Staphylococcus. In: Mani, I., Singh, V., Alzahrani, K.J., Chu, DT. (eds) Microbial Genomic Islands in Adaptation and Pathogenicity. Springer, Singapore. https://doi.org/10.1007/978-981-19-9342-8_11
Download citation
DOI: https://doi.org/10.1007/978-981-19-9342-8_11
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-9341-1
Online ISBN: 978-981-19-9342-8
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)