[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

III-Nitride HEMTs for THz Applications

  • Chapter
  • First Online:
Terahertz Devices, Circuits and Systems

Abstract

This chapter exhaustively explores the prospects of III-Nitride-based High Electron Mobility Transistors (HEMTs) for THz applications. III-Nitride binary semiconductors include AlN, GaN, and InN, having bandgaps of 6.2 eV, 3.4 eV, and 0.7 eV, respectively, which create heterostructures with its high bandgap alloys leading to the formation of 2DEG (two-dimensional electron gas). The 2DEG is created at the heterojunction due to the discontinuity of conduction energy band leading to the formation of quantum well (QW). The electrons present in the 2DEG/QW do not experience any scattering effects, resulting in high electron mobility. The field-effect transistor with high electron mobility is called HEMT, which is a potential candidate for high-power and high-frequency electronic applications. This chapter goes over a full investigation of THz generation and its performance characteristics such as noise power and THz detector response. This attribute has a significant impact on device sensitivity. It may be deduced from prior studies that reducing noise improves the device's sensitivity significantly. Hence, in this piece of work, the THz capability of this device is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
GBP 12.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 74.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lenka TR, Panda AK. Role of nanoscale AlN and InN for the microwave characteristics of AlGaN/(Al, In)N/GaN-based HEMT. Semiconductors. 2011;45(9):1211–8. https://doi.org/10.1134/S1063782611090156.

    Article  ADS  Google Scholar 

  2. Lenka TR, Panda AK. AlGaN/GaN-based HEMT on SiC substrate for microwave characteristics using different passivation layers. Pramana. 2012;79(1):151–63. https://doi.org/10.1007/s12043-012-0290-9.

    Article  ADS  Google Scholar 

  3. Lenka TR, Dash GN, Panda AK. RF and microwave characteristics of a 10 nm thick InGaN-channel gate recessed HEMT. J Semicond. 2013;34(11):114003. https://doi.org/10.1088/1674-4926/34/11/114003.

  4. Zine-eddine T, Zahra H, Zitouni M. Design and analysis of 10 nm T-gate enhancement-mode MOS-HEMT for high power microwave applications. J Sci Adv Mate Dev. 2019;4(1):180–7. https://doi.org/10.1016/j.jsamd.2019.01.001.

    Article  Google Scholar 

  5. Wang R. Enhancement/depletion-mode HEMT technology for III-nitride mixed-signal and rf applications. 2008

    Google Scholar 

  6. Palankovski V, Vitanov S, Quay R. Field-Plate Optimization of AlGaN/GaN HEMTs. In: 2006 IEEE Compound semiconductor integrated circuit symposium; 2006. p. 107–110. https://doi.org/10.1109/CSICS.2006.319926

  7. Malmros A. Advanced III-nitride technology for mm-wave applications, Ph.D. Thesis, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Sweden, ISBN 978-91-7905-127-3

    Google Scholar 

  8. Bauer M, et al. A high-sensitivity AlGaN/GaN HEMT terahertz detector with integrated broadband bow-tie antenna. IEEE Trans Terahertz Sci Technol. 2019;9(4):430–44. https://doi.org/10.1109/TTHZ.2019.2917782.

    Article  ADS  Google Scholar 

  9. Sun J, et al. Smaller antenna-gate gap for higher sensitivity of GaN/AlGaN HEMT terahertz detectors. Appl Phys Lett. 2020;116(16):161109. https://doi.org/10.1063/1.5142436.

  10. Mimura T, Hiyamizu S, Fujii T, Nanbu K. A new field-effect transistor with selectively doped GaAs/n-AlxGa1-xAs heterojunctions. Jpn J Appl Phys. 1980;19(5):L225–7. https://doi.org/10.1143/JJAP.19.L225.

    Article  ADS  Google Scholar 

  11. Zhou C, et al. Review—the current and emerging applications of the III-nitrides. ECS J Solid State Sci Technol. 2017;6(12):Q149–56. https://doi.org/10.1149/2.0101712jss.

    Article  Google Scholar 

  12. Ahi K. Review of GaN-based devices for terahertz operation. Opt Eng. 2017;56(09):1. https://doi.org/10.1117/1.OE.56.9.090901.

    Article  Google Scholar 

  13. Sun JD, Sun YF, Wu DM, Cai Y, Qin H, Zhang BS. High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor. Appl Phys Lett. 2012;100(1):013506. https://doi.org/10.1063/1.3673617.

  14. Sun YF, et al. Room temperature GaN/AlGaN self-mixing terahertz detector enhanced by resonant antennas. Appl Phys Lett. 2011;98(25):252103. https://doi.org/10.1063/1.3601489.

  15. Hou H, Liu Z, Teng JH, Palacio T, Chua S-J. Modelling of GaN HEMTs as terahertz detectors based on self-mixing. Procedia Eng. 2016;141:98–102. https://doi.org/10.1016/j.proeng.2015.09.225.

    Article  Google Scholar 

  16. Zhou Y, et al. Characterization of a room temperature terahertz detector based on a GaN/AlGaN HEMT. J Semicond. 2011;32(6):064005. https://doi.org/10.1088/1674-4926/32/6/064005.

  17. Xu KY, Wang YN, Zheng CJ, Xiong JW, Wang G. Terahertz performance of a GaN-based planar nanochannel device. J Nanomaterials. 2014;2014:1–5. https://doi.org/10.1155/2014/850915.

    Article  ADS  Google Scholar 

  18. Orlando H, Quispe C. Terahertz characterization of III-nitride compound semiconductors and novel device structures; 2019

    Google Scholar 

  19. Tenneti S, Nahar NK, Volakis JL. Full-wave optimization of nitride-based resonant-tunneling diodes for terahertz amplification. In: 2014 IEEE antennas and propagation society international symposium (APSURSI); 2014. p. 2016–7. https://doi.org/10.1109/APS.2014.6905335

  20. Yamashita M, Kiwa T, Tonouchi M, Nikawa K, Otani C, Kawase K. Laser terahertz emission microscope for inspecting electrical failures in integrated circuits. Int Meet Future Electron Dev. 2004;2004:29–30. https://doi.org/10.1109/IMFEDK.2004.1566392.

    Article  Google Scholar 

  21. Nikawa K et al. Non-electrical-contact LSI failure analysis using non-bias laser terahertz emission microscope. In: 18th IEEE international symposium on the physical and failure analysis of integrated circuits (IPFA); 2011. p. 1–5. https://doi.org/10.1109/IPFA.2011.5992751

  22. Sakai Y, Kawayama I, Nakanishi H, Tonouchi M. Visualization of GaN surface potential using terahertz emission enhanced by local defects. Sci Rep. 2015;5(1):13860. https://doi.org/10.1038/srep13860.

    Article  ADS  Google Scholar 

  23. Hou H, Liu Z, Teng J, Palacios T, Chua S-J. A sub-terahertz broadband detector based on a GaN high-electron-mobility transistor with nanoantennas. Appl Phys Express. 2017;10(1):014101. https://doi.org/10.7567/APEX.10.014101.

  24. Tian Z-F, et al. Responsivity and noise characteristics of AlGaN/GaN-HEMT terahertz detectors at elevated temperatures*. Chin Phys B. 2019;28(5):058501. https://doi.org/10.1088/1674-1056/28/5/058501.

  25. Meng Q, Lin Q, Han F, Jing W, Wang Y, Jiang Z. A terahertz detector based on double-channel GaN/AlGaN high electronic mobility transistor. Materials. 2021;14(20):6193. https://doi.org/10.3390/ma14206193.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge DST (Department of Science and Technology)-SERB (Science and Engineering Research Board), Govt. of India sponsored Mathematical Research Impact Centric Support (MATRICS) project no. MTR/2021/000370 for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenifer Manta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manta, J., Rao, G.P., Lenka, T.R., Choudhury, M., Nguyen, H.P.T. (2022). III-Nitride HEMTs for THz Applications. In: Das, S., Nella, A., Patel, S.K. (eds) Terahertz Devices, Circuits and Systems. Springer, Singapore. https://doi.org/10.1007/978-981-19-4105-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4105-4_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4104-7

  • Online ISBN: 978-981-19-4105-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics