Abstract
Biomechanical models of the myocardium provide more details of the heart behavior and several biomechanical parameters. Thus, biomechanical heart models are important for improving clinical treatment and interventions for patients with heart failure. The aims of this study are to present a biomechanical human left ventricle (LV) models that are derived from clinical imaging data of 20 healthy subjects. End-systolic volume (ESV), end-diastolic volume (EDV), and end-diastole wall thickness from 20 health subjects were computed using cardiac CMR data and personalized cardiac modeling. The results reveal that the computed parameters are in accordance with the normal values of healthy subjects. The outcome of this study suggests that the proposed 3D model of the LV is able to describe the physiological function of the heart and to differentiate between normal and pathological heart function.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Richardson WJ et al (2015) Physiological implications of myocardial scar structure. Compr Physiol 5(4):1877–1909
Wang VY, Nielsen PM, Nash MP (2015) Image-based predictive modeling of heart mechanics. Annu Rev Biomed Eng 351–383
Xi J, Lamata P, Niederer S, Land S, Shi W, Zhuang X et al (2013) The estimation of patient-specific cardiac diastolic functions from clinical measurements. Med Image Anal 17(2):133–146
Baillargeon B, Rebelo N, Fox D, Taylor R, Kuhl E (2014) The living heart project: a robust andante grative simulator for human heart function. Eur J Mech A Solids 48:38–47
Nash MP, Hunter PJ (2000) Computational mechanics of the heart. J Elast 61:113–141
Guccione JM, Moonly SM, Moustakidis P, Costa KD, Moulton MJ, Ratcliffe MB (2001) Mechanism underlying mechanical dysfunction inner the border zone of left ventricular aneurysm: a finite element model study. Ann Thorac Surg 71(2):654–662
Wang H, Gao H, Luo X, Berry C, Griffith B, Ogden R, Wang T (2013) Structure-based finite strain modelling of the human left ventricle in diastole. Int J Numer Method Biomed Eng 29:83–103
Gao H, Carrick D, Berry C, Griffith B, Luo X (2014) Dynamic finite-strain modelling of the human left ventricle in health and disease using an immersed boundary-finite element method. IMA J Appl Math 79:978–1010
Gao H, Aderhold A, Mangion K, Luo X, Husmeier D, Berry C (2014) Advances in computational modelling for personalised medicine after myocardial infarction. J R Soc Interface 14(132):23
Gao H, Aderhold A, Mangion K, Luo X, Husmeier D, Berry C (2017) Changes and classification in myocardial contractile function in the left ventricle following acute myocardial infarction. J R Soc Interface 14(132):3–6
Guccione JM, McCulloch AD, Waldman LK (1991) Passive material properties of intact ventricular myocardium determined from a cylindrical model. J Biomech Eng 113(1):42–55
Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans A Math Phys Eng Sci 367(1902):3445–3475
Bestel J, Clément F, Sorine M (2001) A biomechanical model of muscle contraction. In: Niessen WJ, Viergever MA (eds) Medical image computing and computer-assisted intervention MICCAI 2001. Springer, Berlin Heidelberg, pp 1159–1161
Walker JC, Ratcliffe MB, Zhang P, Wallace AW, Fata B, Hsu EW et al (2005) MRI-based finite-element analysis of left ventricular aneurysm. Am J Physiol Heart Circ Physiol 289(2):692–700
Rumindo G, Ohayon J, Croisille P, Clarysse P (2020) In vivo estimation of normal left ventricular stiffness and contractility based on routine cine MR acquisition. IPEM, 1350–4533
Asner L, Hadjicharalambous M, Chabiniok R, Peressutti D, Sammut E, Wong J et al (2017) Patient-specific modeling for left ventricular mechanics using data-driven boundary energies. Comput Methods Appl Mech Eng 314:269–295
Marchesseau S, Delingette H, Sermesant M, Cabrera-Lozoya R, Tobon-Gomez C, Moireau P et al (2013) Personalization of a cardiac electromechanical model using reduced order unscented kalman filtering from regional volumes. Med Image Anal 17(7):816–829
Wenk JF, Zhang Z, Cheng G, Malhotra D, Bolton GA, Burger M, Suzuki T, Saloner D, Wallace A, Guccione J et al (2010) First finite element model of the left ventricle with mitral valve: insights into ischemic mitral regurgitation. Ann Thorac Surg 89:1546–1554
Cain AP, Ahl R, Hedstrom E et al (2009) Age and gender specific normal values of left ventricular mass, volume and function for gradient echo magnetic resonance imaging: a cross sectional study. BMC Med Imaging
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Rania, A., Benameur, N., Kraiem, T., Labidi, S. (2023). Finite Element of Biomechanical Model of the Human Myocardium from a Cardiac MRI Images. In: Yang, XS., Sherratt, S., Dey, N., Joshi, A. (eds) Proceedings of Seventh International Congress on Information and Communication Technology. Lecture Notes in Networks and Systems, vol 464. Springer, Singapore. https://doi.org/10.1007/978-981-19-2394-4_7
Download citation
DOI: https://doi.org/10.1007/978-981-19-2394-4_7
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-2393-7
Online ISBN: 978-981-19-2394-4
eBook Packages: EngineeringEngineering (R0)