[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Aligning Sentences Between Comparable Texts of Different Styles

  • Conference paper
  • First Online:
Semantic Technology (JIST 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1157))

Included in the following conference series:

  • 834 Accesses

Abstract

Monolingual parallel corpus is crucial for training and evaluating text rewriting or paraphrasing models. Aligning parallel sentences between two large body of texts is a key step toward automatic construction of such parallel corpora. We propose a greedy alignment algorithm that makes use of strong unsupervised similarity measures. The algorithm aligns sentences with state-of-the-art accuracy while being more robust on corpora with special linguistic features. Using this alignment algorithm, we automatically constructed a large English parallel corpus from various translated works of classic literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The model names are abbreviated as “model + filter” schemes. For instance, “BLEU + UNV” means BLEU model for the first three stages of alignment, and Universal Sentence Encoder model for the last stage of filtering.

References

  1. Cer, D., et al.: Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018)

  2. Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A.: Supervised learning of universal sentence representations from natural language inference data. arXiv preprint arXiv:1705.02364 (2017)

  3. Coster, W., Kauchak, D.: Learning to simplify sentences using Wikipedia. In: Proceedings of the Workshop on Monolingual Text-to-Text Generation, pp. 1–9. Association for Computational Linguistics (2011)

    Google Scholar 

  4. Hatzlvassiloglou, V., Klavans, J.L., Eskin, E.: Detecting text similarity over short passages: exploring linguistic feature combinations via machine learning. In: 1999 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora (1999)

    Google Scholar 

  5. Hwang, W., Hajishirzi, H., Ostendorf, M., Wu, W.: Aligning sentences from standard Wikipedia to simple Wikipedia. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 211–217 (2015)

    Google Scholar 

  6. Ji, Y., Eisenstein, J.: Discriminative improvements to distributional sentence similarity. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 891–896 (2013)

    Google Scholar 

  7. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pp. 427–431. Association for Computational Linguistics (April 2017)

    Google Scholar 

  8. Kajiwara, T., Komachi, M.: Building a monolingual parallel corpus for text simplification using sentence similarity based on alignment between word embeddings. In: Proceedings of COLING 2016, The 26th International Conference on Computational Linguistics: Technical Papers, pp. 1147–1158 (2016)

    Google Scholar 

  9. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. Text Summarization Branches Out (2004)

    Google Scholar 

  10. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  11. Mueller, J., Thyagarajan, A.: Siamese recurrent architectures for learning sentence similarity. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  12. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318. Association for Computational Linguistics (2002)

    Google Scholar 

  13. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  14. Zamani, H., Faili, H., Shakery, A.: Sentence alignment using local and global information. Comput. Speech Lang. 39, 88–107 (2016)

    Article  Google Scholar 

  15. Zhu, Z., Bernhard, D., Gurevych, I.: A monolingual tree-based translation model for sentence simplification. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 1353–1361. Association for Computational Linguistics (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiwen Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, X., Zhang, M., Zhu, K.Q. (2020). Aligning Sentences Between Comparable Texts of Different Styles. In: Wang, X., Lisi, F., Xiao, G., Botoeva, E. (eds) Semantic Technology. JIST 2019. Communications in Computer and Information Science, vol 1157. Springer, Singapore. https://doi.org/10.1007/978-981-15-3412-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3412-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3411-9

  • Online ISBN: 978-981-15-3412-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics