[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Analytical Review on Image Compression Using Fractal Image Coding

  • Conference paper
  • First Online:
Soft Computing: Theories and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 584))

  • 1327 Accesses

Abstract

Compression is the process of reducing the size of an image. Reduction can be achieved through reducing the number of bits and encoding time. Encoding and decoding can be used to achieve compression and decompression. Encoding and decoding can be done through fractal image coding which uses the property of self-similarity between the blocks on the basis of affine transformations. Thus, our main goal is to analyze various techniques of fractal encoding for compressing the image. A systematic study of various fractal encoding techniques is done in this paper and based on the study a comparative analysis is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hassan, T.M., Wu, X.: An adaptive algorithm for improving the fractal image compression (FIC). J. Multimedia Acad. 6(6), 477–485 (2011)

    Google Scholar 

  2. Barnsley, M.F., Demko, S.: Iterated function systems and the global construction of fractals. In: Proceedings of Royal Society London. A, vol. 399, pp. 243–275 (1985)

    Google Scholar 

  3. Jacquin, A.E.: Image coding based on a fractal theory of iterated contractive image transformations. IEEE Trans. Image Process. 1, 18–30 (1992)

    Google Scholar 

  4. Jacobs, E.W., Fisher, Y., Boss, R.D.: Image compression: a study of the iterated transform method. IEEE Trans. Signal Process. 40, 251–263 (1992)

    Google Scholar 

  5. Fisher, Y.: Fractal image compression: in theory and application. Springer-Verlag, New York (1994)

    MATH  Google Scholar 

  6. Ramamurthi, B., Gersho, A.: Classified vector quantization of images: IEEE Trans. Commun. 34, 1105–1115 (1986)

    Google Scholar 

  7. Hu, L., Chen, Q.A., Zhang, D.: An image compression method based on fractal theory. In: The 8th International Conference on Computer Supported Cooperative Work in Design Proceedings, pp. 546–550 (2003)

    Google Scholar 

  8. Zhao, Y., Yuan, B.: Image compression using fractls and discrete cosine transform. Int. Lett. 30(6), 474–475 (1994)

    Google Scholar 

  9. Hamzaoui, R.: Decoding algorithm for fractal image compression. Electron. Lett. 32(14), 1273–1274 (1996)

    Google Scholar 

  10. Wang, J., Zheng, N.: A novel fractal image compression scheme with block classification and sorting based on Pearson’s correlation coefficient. IEEE Trans. Image Process. 22(9), 3690–3702 (2013)

    Article  Google Scholar 

  11. Kodgule, U.B., Sonkamble, B.A.: Discrete wavelet transform based fractal image compression using parallel approach. Int. J. Comput. Appl. 122(16), 18–22 (2015)

    Google Scholar 

  12. Kapoor, A., Arora, K., Jain, A., Kapoor, G.P.: Stochastic image compression using fractals. Inf. Technol. Coding Comput.1–6 (2003)

    Google Scholar 

  13. Hamzaoui, R., Saupe, D., Hiller, M.: Fast code enhancement with local search for fractal image compression. In: 2000 International Conference on Image Processing, pp. 156–159 (2000)

    Google Scholar 

  14. Jacquin, A.E.: Image coding based on a fractal theory of iterated contractive image transformation. IEEE Trans. Image Process. 1(1), 18–30 (1992)

    Google Scholar 

  15. Hamzaoui, R., Saupe, D., Hiller, M.: Distortion minimisation with fast local search for fractal image compression. J. Vis. Comm. Image Represent. 2(4), 450–468 (2001)

    Google Scholar 

  16. Lee, C.K., Lee, W.K.: Fast fractal image block coding based on local variances. IEEE Trans. Image Process. 7(6), 888–891 (1998)

    Google Scholar 

  17. Gupta, R., Mehrotra, D., Tyagi, R.K.: Adaptive searchless fractal image compression in DCT domain. Imag. Sci. J. 1–7 (2016)

    Google Scholar 

  18. Revathy, K., Jayamhan, M.: Dynamic domain classification for fractal image compression. Comput. Vision. Pattern Recogn. 4(2), 95–102 (2012)

    Google Scholar 

  19. De Bono, J.P., Mcdowell, G.R.: The fractal micro mechanics of normal compression. Comput. Geotech. 78,11–24 (2016)

    Google Scholar 

  20. Mcdowell, G.R., de Bono, J.P.: On the micro mechanics of one-dimensional normal compression: Geotechnique. 63 895–908 (2013)

    Google Scholar 

  21. Mcdowell, G.R., de Bono, J.P., Yue, P., Yu, H-S.: Micro mechanics of isotropic normal compression. Géotechnique Lett. 3 166–172 (2013

    Google Scholar 

  22. McDowell, G.R., Yue, P., de Bono, J.P.: Micro mechanics of critical states for isotropically over consolidated sand. Powder Technol. 283, 440–446 (2015)

    Google Scholar 

  23. Sun, Y., Xu, R., Chen, L., Hu, X.: Image compression and encryption scheme using fractal dictionary and Julia set. IET Image Proc. 9, 173–183 (2015)

    Article  Google Scholar 

  24. Prashanth, N., Singh, A.V.: Fractal image compression for hd images with noise using wavelet transforms. In: International Conference on Advances in Computing, Communications and Informatics, pp. 1194–1198 (2015)

    Google Scholar 

  25. Padmashree, S., Nagapadma, R.: Statistical analysis of objective measures using fractal image compression for medical images. In: IEEE International Conference on Signal and Image Processing Applications, pp. 563–568 (2015)

    Google Scholar 

  26. Xiaoqing, H., Qin, Z., Wenbo, L.: A new method for image retrieval based on analyzing fractal coding characters. J. Vis. Commun. Image Represent. 42–47 (2013)

    Google Scholar 

  27. Al-Hilo, E.A., George, L.E.: Study of fractal color image compression using YUV components. In: IEEE 36th International Conference on Computer Software and Applications, pp. 596–601 (2012)

    Google Scholar 

  28. Shih, C.W., Chu, H.C., Chen, Y.M., Wen, C.C.: The effectiveness of image features based on fractal image coding for image annotations. Expert Syst. Appl. 39, 12897–12904 (2012)

    Article  Google Scholar 

  29. Lin, Y.L., Wu, M.S.: An edge property-based neighbourhood region search strategy for fractal image compression.Comput. Math. Appl. 62(1), 310–318(2011)

    Google Scholar 

  30. Duh, D.J., Jeng, J.H., Chen, S.Y.: Speed quality control for fractal image compression. Imag. Sci. J. 56, 79–90 (2008)

    Article  Google Scholar 

  31. Truong, T.K., Kung, C.M., Jeng, J.H., Hsieh, M.L.: Fast fractal image compression using spatial correlation. Chaos, Solitons Fractals. 22, 1071–1076 (2004)

    Article  MATH  Google Scholar 

  32. Muruganandhan, A., Banu, R.S.D.W.: Adaptive fractal image compression using PSO. Procedia Comput Sci. 2, 338–344 (2010

    Google Scholar 

  33. Troung, T.K., Jeng, J.H., Reed, I.S., Lee, P.C., Li, A.Q.: A fast encoding algorithm for fractal image compression using the DCT inner product. IEEE Trans. Image Process. 9, 529–535 (2000)

    Google Scholar 

  34. Woon, W.M., Ho, A.T., Yu, T., Tan, S.C., Yap, L.T.: Achieving high data compression of self-similar satellite images using fractal. In: IEEE 2000 International Symposium on Geo Science and Remote Sensing, vol. 2, pp. 609–6111 (2000)

    Google Scholar 

  35. Raman, V., Gupta, R.: JPEG multi-resolution decomposition of image compression using integer wavelets. Int. J. Comput. Appl. 95, 17–20 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sobia Amin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amin, S., Gupta, R., Mehrotra, D. (2018). Analytical Review on Image Compression Using Fractal Image Coding. In: Pant, M., Ray, K., Sharma, T., Rawat, S., Bandyopadhyay, A. (eds) Soft Computing: Theories and Applications. Advances in Intelligent Systems and Computing, vol 584. Springer, Singapore. https://doi.org/10.1007/978-981-10-5699-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5699-4_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5698-7

  • Online ISBN: 978-981-10-5699-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics