Abstract
Looking at technical consumer products like communication devices or pc accessory, we state high saturated markets in developed societies. This leads to a broad range of market offers not only in performance or financial aspects. The users seek for more individual products that differentiate on a subsequent, more qualitative level. User centered design approaches have been developed to handle the resulting high product variety and to keep them economically efficient. E.g., Universal Design supports the development of products for as many persons as possible, also including those with physiological or cognitive deficits. But to really raise the quality of life we also need to take other needs into account. Maslow’s hierarchy of needs states that with the fulfilment of physical needs the level shifts to psychological demands like emotional or attitudinal satisfaction. We will shortly introduce a framework that supports an emotional design optimization based on interdisciplinary findings (e.g. psychology, market research or Kansei Engineering) and statistical data analysis. For a valid forecasting, robust and transparent mathematical treatment of this data is required. To this, we give a first overview of possible approaches and their potential to ensure robust and transparent mathematical data treatment in design for emotional impressions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Norman, D.: Preface. In: Schifferstein, H.N.J., Hekkert, P. (eds.) Product Experience. Elsevier, Amsterdam (2011)
Desmet, P.M.A., Pohlmeyer, A.E.: Positive design: an introduction to design for subjective well-being. Int. J. Des. 7(3), 5–19 (2013)
Felce, D., Perry, J.: Quality of life: its definition and measurement. Res. Dev. Disabil. 16(1), 51–74 (1995)
Ben-Ze’ev, A.: The Subtlety of Emotions, MIT Press (2001)
Porter, M.E.: Competitive Strategy: Techniques for Analyzing Industries and Competitors. Simon and Schuster, New York (2008)
Sociovision, S.GmbH. (ed.): Informationen zu den Sinus-Milieus 2015, Heidelberg, (2015)
Hofbauer, G., Dürr, K.: Der Kunde - das unbekannte Wesen. Psychologische und soziologische Einflüsse auf die Kaufentscheidung Markt- und werteorientierte Unternehmensführung, 2. Auflage. Uni-Ed, Berlin (2011)
Frey, B.: Zur Bewertung von Anmutungsqualitäten., Förderges. Produkt-Marketing, vol. 22, Cologne (1993)
Kett, S., Wartzack, S.: Considering emotional impressions in product design: quality of life theory and its impact on design strategy. In: Proceedings of DESIGN 2016, the 14th International Design Conference, Dubrovnik (2016) (in press)
Osgood, C.E.: The nature and measurement of meaning. Psychol. Bull. 49(3), 197 (1952)
Dörner, R., Broll, W., Grimm, P., Jung, B.: Virtual und augmented reality (VR/ AR): Grundlagen und Methoden der Virtuellen und Augmentierten Realität, eXamen. press, Imprint: Springer, Berlin (2013)
Luft, T., Wartzack, S.: Die matrixbasierte Produktbeschreibung als Bestandteil des Vorgehensmodells in der eigenschaftsbasierten Produktentwicklung. In: Spath, D., Binz, H., Bertsche, B. (eds.) Stuttgarter Symposium für Produktentwicklung (SSP). Fraunhofer, Stuttgart (2013)
Weber, C.: CPM/PDD—an extended theoretical approach to modelling products and product development processes. In: Bley, H., Jansen, H., Krause, F.-L., Shpitalni, M. (eds.) Proceedings of the 2nd German-Israeli Symposium, pp. 159–179. Fraunhofer-IRB-Verlag, Stuttgart (2005)
Guo, F., Liu, W.L., Liu, F.T., Wang, H., Wang, T.B.: Emotional design method of product presented in multi-dimensional variables based on Kansei Engineering. J. Eng. Des. 25(4–6), 194–212 (2014)
Schmitt, I.: Ähnlichkeitssuche in Multimedia-Datenbanken. Retrieval, Suchalgorithmen und Anfragebehandlung, Oldenbourg., München (2009)
Tsuchiya, T., Maeda, T., Matsubara, Y., Nagamachi, M.: A fuzzy rule induction method using genetic algorithm. Int. J. Ind. Ergon. 18(2), 135–145 (1996)
Ishihara, S., Ishihara, K., Nagamachi, M., Matsubara, Y.: An analysis of Kansei structure on shoes using self-organizing neural networks. Int. J. Ind. Ergon. 19(2), 93–104 (1997)
Hsiao, S.-W., Huang, H.-C.: A neural network based approach for product form design. Des. Stud. 23(1), 67–84 (2002)
Nagamachi, M.: Kansei engineering: a new ergonomic consumer-oriented technology for product development. Int. J. Ind. Ergon. 1, 3–11 (1995)
Witten, I.H., Eibe, F.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann/Elsevier, Amsterdam (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Kett, S.G., Schmitt, B., Wartzack, S. (2017). What the Statistics Tell Us—How to Use Empiric Data in Design for Emotional Impressions. In: Chakrabarti, A., Chakrabarti, D. (eds) Research into Design for Communities, Volume 2. ICoRD 2017. Smart Innovation, Systems and Technologies, vol 66. Springer, Singapore. https://doi.org/10.1007/978-981-10-3521-0_56
Download citation
DOI: https://doi.org/10.1007/978-981-10-3521-0_56
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-3520-3
Online ISBN: 978-981-10-3521-0
eBook Packages: EngineeringEngineering (R0)