[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Poisson Noise Removal from Mammogram Using Poisson Unbiased Risk Estimation Technique

  • Conference paper
  • First Online:
Information Systems Design and Intelligent Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 340))

Abstract

We present an experimental work on the denoising of mammogram with Poisson noise. Reviewing the literature, it is found that the denoising performance of the multiresolution tools like wavelet, contourlet and curvelet implemented on mammogram with Poisson noise is unique. The first part of the investigation deals with the confirmation of this exceptional performance with our result. The later half implements the recently developed denoising approach called the Poisson Unbiased Risk Estimation-Linear Expansion of Thresholds (PURE-LET) to the Poisson noise corrupted mammogram with an objective to improve the peak signal to noise ratio (PSNR) further. The PURE-LET successfully removes Poisson noise better than the traditional mathematical transforms already mentioned. The computation time and PSNR are also evaluated in the perspective of the cycle spinning technique. This validates the applicability and efficiency of the novel denoising strategy in the field of digital mammography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Naveed, N., Hussain, A., Arfan, M.J., Choi, T.S.: Quantum and impulse noise filtering from breast mammogram images. Comput. Methods Programs Biomed. 108(3), 1062–1069 (2012)

    Article  Google Scholar 

  2. Görgel, P., Sertbas, A., Ucan, O.N.: A wavelet-based mammographic image denoising and enhancement with homomorphic filtering. J. Med. Syst. 34(6), 993–1002 (2010)

    Article  Google Scholar 

  3. Mencattini, A., Rabottino, G., Salmeri, M., Lojacono, R.: Denoising and enhancement of mammographic images under the assumption of heteroscedastic additive noise by an optimal subband thresholding. Int. J. Wavelets Multiresolut. Inf. Process. 8(5), 713–774 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Görgel, P., Sertbas, A., Ucan, O.N.: Mammographical mass detection and classification using local seed region growing-spherical wavelet transform (LSRG-SWT) hybrid scheme. Comput. Biol. Med. 43(6), 765–774 (2013)

    Article  Google Scholar 

  5. Eltoukhy, M.M., Faye, I., Samir, B.B.: A comparison of wavelet and curvelet for breast cancer diagnosis in digital mammogram. Comput. Biol. Med. 40(4), 384–391 (2010)

    Article  Google Scholar 

  6. Malar, E., Kandaswamy, A., Kirthana, S.S., Nivedhtha, D., Gauthaam, M.: Curvelet image denoising of mammogram images. Int. J. Med. Eng. Inf. 5(1), 60–67 (2013)

    Google Scholar 

  7. Malar, E., Kandaswamy, A., Kirthana, S.S., Nivedhitha, D.: A comparative study on mammographic image denoising technique using wavelet, curvelet and contourlet transforms. In: International Conference on Machine Vision and Image Processing (MVIP), pp. 65-68, Taipei, Taiwan (2012)

    Google Scholar 

  8. Luisier, F., Vonesch, C., Blu, T., Unser, M.: Fast interscale wavelet denoising of Poisson–corrupted images. Sig. Process. 90, 415–427 (2010)

    Article  MATH  Google Scholar 

  9. Makitalo, M., Foi, A.: Optimal inversion of the generalized Anscombe transformation for Poisson-Gaussian noise. IEEE Trans. Image Process. 22(1) 91–103, (2012)

    Google Scholar 

  10. Makitalo, M., Foi, A.: Optimal inversion of the Anscombe transformation in low-count Poisson Image denoising. IEEE Trans. Image Process. 20(1) 99–109, (2010)

    Google Scholar 

  11. Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Comm. Pure Appl. Math. 57, 219–266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Palakkal, S., Prabhu, K.M.M.: Poisson noise removal from images using the fast discrete curvelet transform. In: National Conference on Communications (NCC), pp. 1–5, Bangalore (2011)

    Google Scholar 

  13. Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)

    Article  MathSciNet  Google Scholar 

  14. Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)

    Article  Google Scholar 

  15. Bamberger, R.H., Smith, M.J.T.: A filter bank for the directional decomposition of images: theory and design. IEEE Trans. Signal Process. 40(4), 882–893 (1992)

    Article  Google Scholar 

  16. Blu, T., Luisier, F.: The SURE-LET approach to image denoising. IEEE Trans. Image Process. 16(11), 2778–2786 (2007)

    Article  MathSciNet  Google Scholar 

  17. Luiser, F., Blu, T., Unser, M.: Image denoising in mixed Poisson-Gaussian noise. IEEE Trans. Image Process. 20(3), 696–708 (2011)

    Article  MathSciNet  Google Scholar 

  18. Ying, L., Demanet, L., Candes, E.: 3D discrete curvelet transform. SPIE 5914, 351–361 (2005)

    Google Scholar 

  19. Contourlet Toolbox: http://www.mathworks.in/matlabcentral/fileexchange/8837-contourlet-toolbox

  20. Curvelet Toolbox: http://www.curvelet.org

  21. Pure-Let Toolbox: http://www.mathworks.in/matlabcentral/fileexchange/31557-pure-let-for-poisson-image-denoising

  22. Suckling, J., Parker, J., Dance, D.R., Astley, S.M., Hutt, I., Boggis, C.R.M., Ricketts, I., Stamatakis, E., Cerneaz, N., Kok, S.L., Taylor, P., Betal, D., Savage, J.: The mammographic image analysis society digital mammogram database. In: International Workshop on Digital Mammography, pp. 211–221, York, UK (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manas Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Saha, M., Naskar, M.K., Chatterji, B.N. (2015). Poisson Noise Removal from Mammogram Using Poisson Unbiased Risk Estimation Technique. In: Mandal, J., Satapathy, S., Kumar Sanyal, M., Sarkar, P., Mukhopadhyay, A. (eds) Information Systems Design and Intelligent Applications. Advances in Intelligent Systems and Computing, vol 340. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2247-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2247-7_34

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2246-0

  • Online ISBN: 978-81-322-2247-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics