[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Voltage Harmonics Impact on Line Start Permanent Magnet Synchronous Motor: A New Computational Method

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Line start permanent magnet synchronous motor (LSPMSM) is a promising solution to reach IE4 super premium efficiency which also complies with the IEC standard frame. Voltage harmonics has been showing an ever-increasing trend in the power system grid for the past few decades. Input power consumption, losses, energy efficiency, and torque ripples in a motor are affected due to voltage harmonics. Hence, a study of voltage harmonics and their impact is essential to understand the loss characteristics and steady-state performance in LSPMSM. The losses identified in the existing literature are quite complex, and the effects of winding overhanging and skin effects are excluded in those studies. In this proposed work, a new computational method is developed to identify the various losses, efficiency, and temperature rise that are comprised of a combination of analytical calculation and finite element analysis (FEA). Stator copper loss and rotor copper loss are calculated from fast Fourier transform. The losses calculated from the proposed methodology are much closer to the prototype testing. Hence, the proposed method provides an opportunity for the designer to reduce the impact of voltage harmonics on LSPMSM during the design stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. De Almeida, A.T.; Ferreira, F.J.T.E.; Duarte, A.Q.: Technical and economical considerations on super high-efficiency three-phase motors. IEEE Trans. Ind. Appl. 50(2), 1274–1285 (2014). https://doi.org/10.1109/TIA.2013.2272548

    Article  Google Scholar 

  2. De Almeida, A.T.; Ferreira, F.J.T.E.; Baoming, Ge.: Beyond induction motors-technology trends to move up efficiency. IEEE Trans. Ind. Appl. 50(3), 2103–2114 (2014). https://doi.org/10.1109/TIA.2013.2288425

    Article  Google Scholar 

  3. Fei, W.-Z.; Luk, P.-K.; Ma, J.; Shen, J.-X.; Yang, G.: A high-performance line-start permanent magnet synchronous motor Amended from a small industrial three-phase induction motor. IEEE Trans. Magn. 45(10), 4724–4727 (2009). https://doi.org/10.1109/TMAG.2009.2022179

    Article  Google Scholar 

  4. Marcic, T.; Stumberger, B.; Stumberger, G.; Hadziselimovic, M.; Virtic, P.; Dolinar, D.: Line- starting three- and single-phase interior permanent magnet synchronous motors—direct comparison to induction motors. IEEE Trans. Magn. 44(11), 4413–4416 (2008). https://doi.org/10.1109/TMAG.2008.2001537

    Article  Google Scholar 

  5. Sarani, E.; Vaez-Zadeh, S.: Design procedure and optimal guidelines for overall enhancement of steady-state and transient performances of line start permanent magnet motors. IEEE Trans. Energy Convers. 32(3), 885–894 (2017). https://doi.org/10.1109/TEC.2017.2694485

    Article  Google Scholar 

  6. Kazumi Kurihara, M.; Rahman, A.: High-efficiency line-start interior permanent magnet synchronous motors. IEEE Trans. Ind. Appl. 40(3), 789–796 (2004). https://doi.org/10.1109/TIA.2004.827476

    Article  Google Scholar 

  7. Melfi, M.J.; Umans, S.D.; Atem, J.E.: Viability of highly efficient multi-horsepower line-start permanent-magnet motors. IEEE Trans. Ind. Appl. 51(1), 120–128 (2014). https://doi.org/10.1109/TIA.2014.2347239

    Article  Google Scholar 

  8. Ganesan, A.U.; Chokkalingam, L.N.: Review on the evolution of technology advancements and applications of line-start synchronous machines. IET Electr. Power Appl. 13(1), 1–16 (2019). https://doi.org/10.1049/iet-epa.2018.5283

    Article  Google Scholar 

  9. Kahrisangi, M.G.; Isfahani, A.H.; Vaez-Zadeh, S.; Sebdani, M.R.: Line-start permanent magnet synchronous motor versus induction motors: A comparative study. Electr. Eng. 7(4), 459–466 (2012). https://doi.org/10.1007/s11460-012-0217-8

    Article  Google Scholar 

  10. Palangar, M.F.; Mahmoudi, A.; Kahourzade, S.; Soong, W.L.: Simultaneous efficiency and starting torque optimization of a line-start permanent-magnet synchronous motor using two different optimization approaches. Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-021-05659-8

    Article  Google Scholar 

  11. Ugale, R.T.; Chaudhari, B.N.: Rotor configurations for improved starting and synchronous performance of line start permanent-magnet synchronous motor. IEEE Trans. Ind. Electr. 64(1), 138–148 (2017). https://doi.org/10.1109/TIE.2016.2606587

    Article  Google Scholar 

  12. Sethupathi, P.; Senthilnathan, N.: Comparative analysis of line-start permanent magnet synchronous motor and squirrel cage induction motor under customary power quality indices. Electr. Eng. 102(3), 1339–1349 (2020). https://doi.org/10.1007/s00202-020-00955-2

    Article  Google Scholar 

  13. Debruyne, C.; Sergeant, P.; Derammelaere, S.; Desmet, J.J.M.; Vandevelde, L.: Influence of supply voltage distortion on the energy efficiency of line-start permanent-magnet motors. IEEE Trans. Ind. Appl. 50(2), 1034–1043 (2014). https://doi.org/10.1109/TIA.2013.2277593

    Article  Google Scholar 

  14. Zhang, D.; An, R.; Thomas, Wu.: Effect of voltage unbalance and distortion on the loss characteristics of three-phase cage induction motor. IET Electr. Power Appl. 12(2), 264–270 (2017). https://doi.org/10.1049/iet-epa.2017.0464

    Article  Google Scholar 

  15. Duarte, S.X.; Kagan, N.: A power-quality index to assess the impact of voltage harmonic distortions and unbalance to three-phase induction motors. IEEE Trans. Power Delivery. 25(3), 1846–1854 (2010). https://doi.org/10.1109/TPWRD.2010.2044665

    Article  Google Scholar 

  16. Kurt, M.S.; Balci, M.E.; Abdel, S.H.E.; Aleem.: Algorithm for estimating derating of induction motors supplied with under/over unbalanced voltages using response surface methodology. J. Eng. 2017(12), 627–633 (2017). https://doi.org/10.1049/joe.2017.0025

    Article  Google Scholar 

  17. Jafari, M.; Malekjamshidi, Z.; Zhu, J.: Copper loss analysis of a multiwinding high-frequency transformer for a magnetically-coupled residential microgrid. IEEE Trans. Ind. Appl. 55(1), 283–297 (2019). https://doi.org/10.1109/TIA.2018.2864170

    Article  Google Scholar 

  18. Hamalainen, H.; Pyrhonen, J.; Nerg, J.; Talvitie, J.: AC resistance factor of litz-wire windings used in low-voltage high-power generators. IEEE Trans. Ind. Electr. 61(2), 693–700 (2014). https://doi.org/10.1109/TIE.2013.2251735

    Article  Google Scholar 

  19. Mahmoudi, A.; Soong, W.L.; Pellegrino, G.; Armando, E.: Loss function modeling of efficiency maps of electrical machines. IEEE Trans. Ind. Appl. 53(5), 4221–4231 (2017). https://doi.org/10.1109/TIA.2017.2695443

    Article  Google Scholar 

  20. Hafiz, K.; Nanda, G.; Kar, N.C.: Performance analysis of aluminum- and copper-rotor induction generators considering skin and thermal effects. IEEE Trans. Ind. Electr. 57(1), 181–192 (2010). https://doi.org/10.1109/TIE.2009.2034177

    Article  MATH  Google Scholar 

  21. T. Gundogdu, Z. Q. Zhu, J. C. Mipo and P. Farah. Investigation of Non-Sinusoidal Rotor Bar Current Phenomenon in Induction Machines – Influence of Slip and Electric Loading. In: 2016 XXII International Conference on Electrical Machines (ICEM) 419–425 (2016). https://doi.org/10.1109/ICELMACH.2016.7732560

  22. T. Gundogdu, Z. Q. Zhu, J. C. Mipo and P. Farah.: Influence of magnetic saturation on rotor bar current waveform and performance in induction machines. In: 2016 XXII International Conference on Electrical Machines (ICEM), 391–397 (2016). https://doi.org/10.1109/ICELMACH.2016.7732556

  23. Zhang, Y.; Chi, Q.; Ren, Y.; Zhang, D.; Koh, C.-S.: A new hysteresis loss estimation in the induction motor core considering rotating magnetic fields. J. Electr. Eng. Technol. 14(5), 1983–1989 (2019). https://doi.org/10.1007/s42835-019-00231-9

    Article  Google Scholar 

  24. Takahashi, A.; Kikuchi, S.; Miyata, K.; Binder, A.: Asynchronous torque of line-starting permanent-magnet synchronous motors. IEEE Trans. Energy Convers. 30(2), 498–506 (2015). https://doi.org/10.1109/TEC.2014.2361836

    Article  Google Scholar 

  25. Ganesan, A.U.; Chokkalingam, L.N.: Influence of rotor cage resistance in torque ripple reduction for line start synchronous machines. IET Electr. Power Appl. 13(12), 1921–1934 (2019). https://doi.org/10.1049/iet-epa.2018.5783

    Article  Google Scholar 

  26. Isfahani, A.H.; Vaez-Zadeh, S.: Effect of magnetizing inductance on start-up and synchronization of line-start permanent-magnet synchronous motor. IEEE Trans. Magn. 47(4), 823–829 (2011). https://doi.org/10.1109/TMAG.2010.2091651

    Article  Google Scholar 

  27. Micev, M.; Calasan, M.P.; Aleem, S.H.E.A.; Hasanien, H.M.; Petrovic, D.: Two novel approaches for identification of synchronous machine parameters from short-circuit current waveform. IEEE Trans. Ind. Electr. (2021). https://doi.org/10.1109/TIE.2021.3086715

    Article  Google Scholar 

  28. Calasan, M.P.; Alqarni, M.; Rosic, M.; Koljcevic, N.; Alamri, B.; Abdel, S.H.E.; Aleem.: A novel exact analytical solution based on kloss equation towards accurate speed-time characteristics modeling of induction machines during no-load direct startups. Appl. Sci. 11(11), 5102 (2021). https://doi.org/10.3390/app11115102

    Article  Google Scholar 

  29. Micev, M.; Calasan, M.; Petrovic, D.S.; Ali, Z.M.; Quynh, N.V.; Abdel, S.H.E.; Aleem.: Field current waveform-based method for estimation of synchronous generator parameters using adaptive black widow optimization algorithm. IEEE Access. 8, 207537–207550 (2021). https://doi.org/10.1109/ACCESS.2020.3037510

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Science and Technology, Fund for Improvement of Science and Technology Infrastructure in University and Higher Education Institution for giving essential facility and equipment to carry out this project work. (Ref. No: SR/FST/College-096/2017). The authors also thank Entuple Technologies, Bangalore and Electromotive Power Drives, Coimbatore for having provided support to design, analysis and prototype development of the 3hp LSPMSM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sethupathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sethupathi, P., Senthilnathan, N., Ravisankar, B. et al. Voltage Harmonics Impact on Line Start Permanent Magnet Synchronous Motor: A New Computational Method. Arab J Sci Eng 47, 14377–14388 (2022). https://doi.org/10.1007/s13369-022-06764-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06764-y

Keywords

Navigation