Abstract
Line start permanent magnet synchronous motor (LSPMSM) is a promising solution to reach IE4 super premium efficiency which also complies with the IEC standard frame. Voltage harmonics has been showing an ever-increasing trend in the power system grid for the past few decades. Input power consumption, losses, energy efficiency, and torque ripples in a motor are affected due to voltage harmonics. Hence, a study of voltage harmonics and their impact is essential to understand the loss characteristics and steady-state performance in LSPMSM. The losses identified in the existing literature are quite complex, and the effects of winding overhanging and skin effects are excluded in those studies. In this proposed work, a new computational method is developed to identify the various losses, efficiency, and temperature rise that are comprised of a combination of analytical calculation and finite element analysis (FEA). Stator copper loss and rotor copper loss are calculated from fast Fourier transform. The losses calculated from the proposed methodology are much closer to the prototype testing. Hence, the proposed method provides an opportunity for the designer to reduce the impact of voltage harmonics on LSPMSM during the design stage.
Similar content being viewed by others
References
De Almeida, A.T.; Ferreira, F.J.T.E.; Duarte, A.Q.: Technical and economical considerations on super high-efficiency three-phase motors. IEEE Trans. Ind. Appl. 50(2), 1274–1285 (2014). https://doi.org/10.1109/TIA.2013.2272548
De Almeida, A.T.; Ferreira, F.J.T.E.; Baoming, Ge.: Beyond induction motors-technology trends to move up efficiency. IEEE Trans. Ind. Appl. 50(3), 2103–2114 (2014). https://doi.org/10.1109/TIA.2013.2288425
Fei, W.-Z.; Luk, P.-K.; Ma, J.; Shen, J.-X.; Yang, G.: A high-performance line-start permanent magnet synchronous motor Amended from a small industrial three-phase induction motor. IEEE Trans. Magn. 45(10), 4724–4727 (2009). https://doi.org/10.1109/TMAG.2009.2022179
Marcic, T.; Stumberger, B.; Stumberger, G.; Hadziselimovic, M.; Virtic, P.; Dolinar, D.: Line- starting three- and single-phase interior permanent magnet synchronous motors—direct comparison to induction motors. IEEE Trans. Magn. 44(11), 4413–4416 (2008). https://doi.org/10.1109/TMAG.2008.2001537
Sarani, E.; Vaez-Zadeh, S.: Design procedure and optimal guidelines for overall enhancement of steady-state and transient performances of line start permanent magnet motors. IEEE Trans. Energy Convers. 32(3), 885–894 (2017). https://doi.org/10.1109/TEC.2017.2694485
Kazumi Kurihara, M.; Rahman, A.: High-efficiency line-start interior permanent magnet synchronous motors. IEEE Trans. Ind. Appl. 40(3), 789–796 (2004). https://doi.org/10.1109/TIA.2004.827476
Melfi, M.J.; Umans, S.D.; Atem, J.E.: Viability of highly efficient multi-horsepower line-start permanent-magnet motors. IEEE Trans. Ind. Appl. 51(1), 120–128 (2014). https://doi.org/10.1109/TIA.2014.2347239
Ganesan, A.U.; Chokkalingam, L.N.: Review on the evolution of technology advancements and applications of line-start synchronous machines. IET Electr. Power Appl. 13(1), 1–16 (2019). https://doi.org/10.1049/iet-epa.2018.5283
Kahrisangi, M.G.; Isfahani, A.H.; Vaez-Zadeh, S.; Sebdani, M.R.: Line-start permanent magnet synchronous motor versus induction motors: A comparative study. Electr. Eng. 7(4), 459–466 (2012). https://doi.org/10.1007/s11460-012-0217-8
Palangar, M.F.; Mahmoudi, A.; Kahourzade, S.; Soong, W.L.: Simultaneous efficiency and starting torque optimization of a line-start permanent-magnet synchronous motor using two different optimization approaches. Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-021-05659-8
Ugale, R.T.; Chaudhari, B.N.: Rotor configurations for improved starting and synchronous performance of line start permanent-magnet synchronous motor. IEEE Trans. Ind. Electr. 64(1), 138–148 (2017). https://doi.org/10.1109/TIE.2016.2606587
Sethupathi, P.; Senthilnathan, N.: Comparative analysis of line-start permanent magnet synchronous motor and squirrel cage induction motor under customary power quality indices. Electr. Eng. 102(3), 1339–1349 (2020). https://doi.org/10.1007/s00202-020-00955-2
Debruyne, C.; Sergeant, P.; Derammelaere, S.; Desmet, J.J.M.; Vandevelde, L.: Influence of supply voltage distortion on the energy efficiency of line-start permanent-magnet motors. IEEE Trans. Ind. Appl. 50(2), 1034–1043 (2014). https://doi.org/10.1109/TIA.2013.2277593
Zhang, D.; An, R.; Thomas, Wu.: Effect of voltage unbalance and distortion on the loss characteristics of three-phase cage induction motor. IET Electr. Power Appl. 12(2), 264–270 (2017). https://doi.org/10.1049/iet-epa.2017.0464
Duarte, S.X.; Kagan, N.: A power-quality index to assess the impact of voltage harmonic distortions and unbalance to three-phase induction motors. IEEE Trans. Power Delivery. 25(3), 1846–1854 (2010). https://doi.org/10.1109/TPWRD.2010.2044665
Kurt, M.S.; Balci, M.E.; Abdel, S.H.E.; Aleem.: Algorithm for estimating derating of induction motors supplied with under/over unbalanced voltages using response surface methodology. J. Eng. 2017(12), 627–633 (2017). https://doi.org/10.1049/joe.2017.0025
Jafari, M.; Malekjamshidi, Z.; Zhu, J.: Copper loss analysis of a multiwinding high-frequency transformer for a magnetically-coupled residential microgrid. IEEE Trans. Ind. Appl. 55(1), 283–297 (2019). https://doi.org/10.1109/TIA.2018.2864170
Hamalainen, H.; Pyrhonen, J.; Nerg, J.; Talvitie, J.: AC resistance factor of litz-wire windings used in low-voltage high-power generators. IEEE Trans. Ind. Electr. 61(2), 693–700 (2014). https://doi.org/10.1109/TIE.2013.2251735
Mahmoudi, A.; Soong, W.L.; Pellegrino, G.; Armando, E.: Loss function modeling of efficiency maps of electrical machines. IEEE Trans. Ind. Appl. 53(5), 4221–4231 (2017). https://doi.org/10.1109/TIA.2017.2695443
Hafiz, K.; Nanda, G.; Kar, N.C.: Performance analysis of aluminum- and copper-rotor induction generators considering skin and thermal effects. IEEE Trans. Ind. Electr. 57(1), 181–192 (2010). https://doi.org/10.1109/TIE.2009.2034177
T. Gundogdu, Z. Q. Zhu, J. C. Mipo and P. Farah. Investigation of Non-Sinusoidal Rotor Bar Current Phenomenon in Induction Machines – Influence of Slip and Electric Loading. In: 2016 XXII International Conference on Electrical Machines (ICEM) 419–425 (2016). https://doi.org/10.1109/ICELMACH.2016.7732560
T. Gundogdu, Z. Q. Zhu, J. C. Mipo and P. Farah.: Influence of magnetic saturation on rotor bar current waveform and performance in induction machines. In: 2016 XXII International Conference on Electrical Machines (ICEM), 391–397 (2016). https://doi.org/10.1109/ICELMACH.2016.7732556
Zhang, Y.; Chi, Q.; Ren, Y.; Zhang, D.; Koh, C.-S.: A new hysteresis loss estimation in the induction motor core considering rotating magnetic fields. J. Electr. Eng. Technol. 14(5), 1983–1989 (2019). https://doi.org/10.1007/s42835-019-00231-9
Takahashi, A.; Kikuchi, S.; Miyata, K.; Binder, A.: Asynchronous torque of line-starting permanent-magnet synchronous motors. IEEE Trans. Energy Convers. 30(2), 498–506 (2015). https://doi.org/10.1109/TEC.2014.2361836
Ganesan, A.U.; Chokkalingam, L.N.: Influence of rotor cage resistance in torque ripple reduction for line start synchronous machines. IET Electr. Power Appl. 13(12), 1921–1934 (2019). https://doi.org/10.1049/iet-epa.2018.5783
Isfahani, A.H.; Vaez-Zadeh, S.: Effect of magnetizing inductance on start-up and synchronization of line-start permanent-magnet synchronous motor. IEEE Trans. Magn. 47(4), 823–829 (2011). https://doi.org/10.1109/TMAG.2010.2091651
Micev, M.; Calasan, M.P.; Aleem, S.H.E.A.; Hasanien, H.M.; Petrovic, D.: Two novel approaches for identification of synchronous machine parameters from short-circuit current waveform. IEEE Trans. Ind. Electr. (2021). https://doi.org/10.1109/TIE.2021.3086715
Calasan, M.P.; Alqarni, M.; Rosic, M.; Koljcevic, N.; Alamri, B.; Abdel, S.H.E.; Aleem.: A novel exact analytical solution based on kloss equation towards accurate speed-time characteristics modeling of induction machines during no-load direct startups. Appl. Sci. 11(11), 5102 (2021). https://doi.org/10.3390/app11115102
Micev, M.; Calasan, M.; Petrovic, D.S.; Ali, Z.M.; Quynh, N.V.; Abdel, S.H.E.; Aleem.: Field current waveform-based method for estimation of synchronous generator parameters using adaptive black widow optimization algorithm. IEEE Access. 8, 207537–207550 (2021). https://doi.org/10.1109/ACCESS.2020.3037510
Acknowledgements
This work was supported by the Department of Science and Technology, Fund for Improvement of Science and Technology Infrastructure in University and Higher Education Institution for giving essential facility and equipment to carry out this project work. (Ref. No: SR/FST/College-096/2017). The authors also thank Entuple Technologies, Bangalore and Electromotive Power Drives, Coimbatore for having provided support to design, analysis and prototype development of the 3hp LSPMSM.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sethupathi, P., Senthilnathan, N., Ravisankar, B. et al. Voltage Harmonics Impact on Line Start Permanent Magnet Synchronous Motor: A New Computational Method. Arab J Sci Eng 47, 14377–14388 (2022). https://doi.org/10.1007/s13369-022-06764-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13369-022-06764-y