[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Hybrid Particle Swarm Optimization with Sine Cosine Algorithm and Nelder–Mead Simplex for Solving Engineering Design Problems

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper introduces a novel hybrid evolutionary algorithm that combines particle swarm optimization (PSO) algorithm with sine–cosine algorithm (SCA) and Nelder–Mead simplex (NMS) optimization technique. However, the algorithm of PSO has some drawbacks like locating local minima rather than global minima, low converge rate and low balance between exploration and exploitation. In this paper, the combination of PSO algorithm with update positions mathematical equation in SCA and NMS technique is presented in order to solve these problems. So a new hybrid strategy called PSOSCANMS is introduced. The SCA algorithm is based on the behavior of sine and cosine functions in the mathematical formula used for solutions. However, the NMS mathematical formulations attempt to replace the worst vertex with a new point, which depends on the worst point and the center of the best vertices. The combined effect of both mathematical formulations of PSO ensures a consistency of exploitation and exploration that makes the search in the search space more effective. Further, it escapes into the local minimum issue and resolves the low converge rate problem. In order to test PSOSCANMS’s performance, a set of 23 well-known unimodal and multimodal functions have been benchmarked. Experimental results showed that PSOSCANMS is more successful than PSO and outperforms the other state-of-the-art compared algorithms over the tested optimization problems. Moreover, an engineering design problem such as spring compression, welded beam is also considered. The result of the problems in engineering design and application problems shows that the algorithm proposed is relevant in difficult cases involving unknown search areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Krawiec, K., Simons, C., Swan, J., Woodward, J.: Metaheuristic design patterns: new perspectives for larger-scale search architectures. In: Vasant, P., Alparslan-Gok, S.Z., Weber, G. (eds.) Handbook of Research on Emergent Applications of Optimization Algorithms, pp. 1–36. IGI Global, Pennsylvania (2018)

    Google Scholar 

  2. Ong, P.; Chin, D.D.V.S.; Ho, C.S.; Ng, C.H.: Metaheuristic approaches for extrusion manufacturing process: utilization of flower pollination algorithm and particle swarm optimization. In: Handbook of Research on Applied Optimization Methodologies in Manufacturing Systems, pp. 43–56. IGI Global, Pennsylvania (2018)

  3. Hudaib, A.A.; Fakhouri, H.N.: Supernova optimizer: a novel natural inspired meta-heuristic. Mod. Appl. Sci. 12(1), 32 (2017)

    Article  Google Scholar 

  4. Mendes, R.; Kennedy, J.; Neves, J.: The fully imformed particle swarm: Simpler, mabe better. IEEE Trans. Evol. Comput. 8, 204–210. (2004). https://doi.org/10.1109/TEVC.2004.826074

    Article  Google Scholar 

  5. Kennedy, J.: Particle swarm optimization. Encyclopedia of machine learning, pp. 760–766. Springer, US (2011)

    Google Scholar 

  6. Al-Sayyed, R.M.; Fakhouri, H.N.; Rodan, A.; Pattinson, C.: Polar particle swarm algorithm for solving cloud data migration optimization problem. Mod. Appl. Sci. 11(8), 98 (2017)

    Article  Google Scholar 

  7. Altay, E.V.; Alatas, B.: Performance comparisons of socially inspired metaheuristic algorithms on unconstrained global optimization. In Advances in Computer Communication and Computational Sciences, pp. 163–175. Springer, Singapore (2019)

  8. Chegini, S.N.; Bagheri, A.; Najafi, F.: PSOSCALF: a new hybrid PSO based on Sine Cosine Algorithm and Levy flight for solving optimization problems. Appl. Soft Comput. 73, 697–726 (2018)

    Article  Google Scholar 

  9. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl. Based Syst. 96, 120–133 (2016)

    Article  Google Scholar 

  10. Eberhart, R.; Kennedy, J.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

  11. Benítez-Hidalgo, A.; Nebro, A.J.; Durillo, J.J.; García-Nieto, J.; López-Camacho, E.; Barba-González, C.; Aldana-Montes, J.F.: About designing an observer pattern-based architecture for a multi-objective metaheuristic optimization framework. In: International Symposium on Intelligent and Distributed Computing, pp. 50–60. Springer, Cham (2018)

  12. Li, Y.G.; Gui, W.H.; Yang, C.H.; Li, J.: Improved PSO algorithm and its application. J. Central South Univ. Technol. 12(1), 222–226 (2005)

    Article  Google Scholar 

  13. Pham, D.T.; Ghanbarzadeh, A.; Koç, E.; Otri, S.; Rahim, S.; Zaidi, M.: The bee’s algorithm—a novel tool for complex optimization problems. In: Intelligent Production Machines and Systems, pp. 454–459. Elsevier Science Ltd.‏, Amsterdam (2006)

  14. Spendley, W. G. R. F. R.; Hext, G. R.; Himsworth, F. R.: Sequential application of simplex designs in optimisation and evolutionary operation. Technometrics, 4(4), 441–461 (1962)

    Article  MathSciNet  Google Scholar 

  15. Nelder, J.A.; Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    Article  MathSciNet  Google Scholar 

  16. Wright, M.H.: Nelder, Mead, and the other simplex method. Doc. Math. 7, 271–276 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Sörensen, K.; Sevaux, M.; Glover, F.: A history of metaheuristics. In: Handbook of Heuristics, pp. 1–18 (2018)

  18. Beni, G.; Wang, J.: Swarm intelligence in cellular robotic systems. In: Proceedings of NATO Advanced Workshop on Robots and Biological Systems, Tuscany, Italy, June 26–30 (1989). https://doi.org/10.1007/978-3-642-58069-7_38

  19. Dorigo, M.; Di Caro, G.: Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Vol. 2, pp. 1470–1477. IEEE, Washington (1999)‏

  20. Yao, X.; Liu, Y.; Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)

    Article  Google Scholar 

  21. Yang, X.S.; Deb, S.: Cuckoo search via Lévy flights. In: 2009 World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 210–214. IEEE, Washington (2009)‏

  22. Karaboga, D.; Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  Google Scholar 

  23. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Article  Google Scholar 

  24. Yang, X.S.: Firefly algorithm. In: Engineering Optimization, pp. 221–223 (2010)

  25. Mirjalili, S.; Mirjalili, S.M.; Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  26. Kaveh, A.; Farhoudi, N.: A new optimization method: Dolphin echolocation. Adv. Eng. Softw. 59, 53–70 (2013)

    Article  Google Scholar 

  27. Pan, W.T.: A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl. Based Syst. 26, 69–74 (2012)

    Article  Google Scholar 

  28. Krishnanand, K.N.; Ghose, D.: Glowworm swarm optimization: a new method for optimising multi-modal functions. Int. J. Comput. Intell. Stud. 1(1), 93–119 (2009)

    Article  Google Scholar 

  29. Kiran, M.S.: TSA: tree-seed algorithm for continuous optimization. Expert Syst. Appl. 42(19), 6686–6698 (2015)

    Article  Google Scholar 

  30. Rajabioun, R.: Cuckoo optimization algorithm. Appl. Soft Comput. 11(8), 5508–5518 (2011)

    Article  Google Scholar 

  31. Oftadeh, R.; Mahjoob, M.J.; Shariatpanahi, M.: A novel meta-heuristic optimization algorithm inspired by group hunting of animals: hunting search. Comput. Math Appl. 60(7), 2087–2098 (2010)

    Article  Google Scholar 

  32. Zhao, W.; Wang, L.; Zhang, Z.: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl. Based Syst. 163, 283–304 (2019)

    Article  Google Scholar 

  33. Joshi, H.; Arora, S.: Enhanced grey wolf optimization algorithm for global optimization. Fundam. Inf. 153(3), 235–264 (2017)

    Article  MathSciNet  Google Scholar 

  34. Qais, M.H.; Hasanien, H.M.; Alghuwainem, S.: Augmented grey wolf optimizer for grid-connected PMSG-based wind energy conversion systems. Appl. Soft Comput. 69, 504–515 (2018)

    Article  Google Scholar 

  35. Fakhouri, S.N., Hudaib, A., Fakhouri, H.N.: Enhanced optimizer algorithm and its application to software testing. J. Exp. Theor. Artif. Intell. (2019). https://doi.org/10.1080/0952813X.2019.1694591

    Article  Google Scholar 

  36. Mohamed, A.A.A.; Mohamed, Y.S.; El-Gaafary, A.A.; Hemeida, A.M.: Optimal power flow using moth swarm algorithm. Electr. Power Syst. Res. 142, 190–206 (2017)

    Article  Google Scholar 

  37. Arora, S.; Singh, S.: Butterfly optimization algorithm: a novel approach for global optimization. Soft. Comput. 23, 715–734 (2018)

    Article  Google Scholar 

  38. Van Den Berg, R. A.; Pogromsky, A. Y.; Leonov, G. A.; Rooda, J. E.: Design of convergent switched systems. In Pettersen K.Y., Gravdahl J.T., Nijmeijer H. (eds.) Group coordination and cooperative control (pp. 291–311). Springer, Berlin, Heidelberg (2006)

    Chapter  Google Scholar 

  39. Semwal, V.B.; Singha, J.; Sharma, P.K.; Chauhan, A.; Behera, B.: An optimized feature selection technique based on incremental feature analysis for bio-metric gait data classification. Multimed. Tools Appl. 76(22), 24457–24475 (2017)

    Article  Google Scholar 

  40. Semwal, V.B., Gaud, N., Nandi, G.C.: Human gait state prediction using cellular automata and classification using ELM. In: Tanveer, M., Pachori, R. (eds.) Machine Intelligence and Signal Analysis, pp. 135–145. Springer, Singapore (2019)

    Chapter  Google Scholar 

  41. Kumar, S.; Aaron, J.; Sokolov, K.: Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat. Protoc. 3(2), 314 (2008)

    Article  Google Scholar 

  42. Valsange, P.S.: Design of helical coil compression spring: a review. Int. J. Eng. Res. Appl. 2(6), 513–522 (2012)

    Google Scholar 

  43. Deb, K.: Optimal design of a welded beam via genetic algorithms. AIAA J. 29(11), 2013–2015 (1991)

    Article  Google Scholar 

  44. Azqandi, M.S., Delavar, M., Arjmand, M.: An enhanced time evolutionary optimization for solving engineering design problems. Eng. Comput. (2019). https://doi.org/10.1007/s00366-019-00729-w

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussam N. Fakhouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhouri, H.N., Hudaib, A. & Sleit, A. Hybrid Particle Swarm Optimization with Sine Cosine Algorithm and Nelder–Mead Simplex for Solving Engineering Design Problems. Arab J Sci Eng 45, 3091–3109 (2020). https://doi.org/10.1007/s13369-019-04285-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04285-9

Keywords

Navigation