[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The classification of convex polygons with triangular area or perimeter bisecting deltoids

  • Original Paper
  • Published:
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry Aims and scope Submit manuscript

Abstract

We classify all convex polygons whose area-bisecting deltoids or perimeter-bisecting deltoids are similar to those for a triangle, that is, they are tri-cusped and tri-concave-out closed curves. The additional condition that these two kinds of deltoids are segment-free makes no difference to the first classification and restricts the second to one that is much more similar to the first. We show that, up to similarity, the restricted second class is a complete system of representatives for the first class modulo affine equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bárány, I., Hug, D., Schneider, R.: Affine diameters of convex bodies. Proc. Amer. Math. Soc. 144(2), 797–812 (2016)

    Article  MathSciNet  Google Scholar 

  • Bárány, I., Zamfirescu, T.: Diameters in typical convex bodies. Canad. J. Math. 42(1), 50–61 (1990)

    Article  MathSciNet  Google Scholar 

  • Berele, A., Catoiu, S.: The perimeter sixpartite center of a triangle. J. Geom. 108(3), 861–868 (2017)

    Article  MathSciNet  Google Scholar 

  • Berele, A., Catoiu, S.: Bisecting the perimeter of a triangle. Math. Mag. 91(2), 121–133 (2018)

    Article  MathSciNet  Google Scholar 

  • Berele, A., Catoiu, S.: Nonuniqueness of sixpartite points. Amer. Math. Mon. 125(7), 638–642 (2018)

    Article  MathSciNet  Google Scholar 

  • Berele, A., Catoiu, S.: The Fermat-Torricelli theorem in convex geometry, J. Geom. 111, no. 2, Article 22. (21 pp.) (2020)

  • Berele, A., Catoiu, S.: Bisecting envelopes of convex polygons, preprint

  • Berele, A., Catoiu, S.: Zindler points of triangles, Math. Mag., to appear

  • Berele, A., Catoiu, S.: The pentagonal pizza conjecture, Amer. Math. Monthly, to appear

  • Berele, A., Catoiu, S.: Area computation for triangular area or perimeter bisecting deltoids, preprint

  • Besicovitch, A.S., Zamfirescu, T.: On pencils of diameters in convex bodies. Rev. Roumaine Math. Pures Appl. 11, 637–639 (1966)

    MathSciNet  MATH  Google Scholar 

  • Böhringer, K. F., Donald, R., Halperin, D.: On area bisectors of a polygon, Discrete Comput. Geom. 22, (2), 269–285 (1999)

  • Ceder, J.G.: On outwardly simple line families. Canad. J. Math. 16, 1–11 (1964)

    Article  MathSciNet  Google Scholar 

  • Dumitrescu, A., Ebbers-Baumann, A., Grüne, A., Klein, R., Rote, G.: On the geometric dilation of closed curves, graphs, and point sets. Comput. Geom. 36(1), 16–38 (2007)

    Article  MathSciNet  Google Scholar 

  • Dunn, J.A., Pretty, J.E.: Halving a triangle. Math. Gaz. 56(396), 105–108 (1972)

    Article  Google Scholar 

  • Goodey, P.: Area and perimeter bisectors of convex planar sets. Integral geometry and convexity, 29–35. World Sci. (2006)

  • Grünbaum, B.: Continuous families of curves. Canad. J. Math. 18, 529–537 (1966)

    Article  MathSciNet  Google Scholar 

  • Grünbaum, B.: Arrangements and spreads, CBMS, No. 10. Amer. Math. Soc., Providence, R.I. (1972)

  • Grüne, A.: Geometric dilation and halving distance, Ph.D. Dissertation, Universität Bonn (2006)

  • Guàrdia, R., Hurtado, F.: On the equipartition of plane convex bodies and convex polygons. J. Geom. 83(1–2), 32–45 (2005)

    Article  MathSciNet  Google Scholar 

  • Hammer, P. C., Sobczyk, A.: Planar line families I, II, Proc. Amer. Math. Soc. 4, (I) 226-233; (II) 341–349 (1953)

  • Lawrence, J. D.: A Catalog of Special Plane Curves, Dover, New York. Reprinted in 2004 (1972)

  • Lockwood, E. H.: A book of curves, Cambridge University Press, New York. Reprinted in 2007 (1967)

  • Martini, H., Montejano, L., Oliveros, D.: Bodies with Constant Width. An Introduction to Convex Geometry with Applications. Birkhäuser/Springer, Cham (2019)

  • Martini, H., Soltan, V.: A theorem on affine diameters of convex polytopes. Acta Sci. Math. (Szeged) 69(1–2), 431–440 (2003)

    MathSciNet  MATH  Google Scholar 

  • Martini, H., Wu, S.: Geometric dilation of closed curves in normed planes. Comput. Geom. 42(4), 315–321 (2009)

    Article  MathSciNet  Google Scholar 

  • Martini, H., Wu, S.: On Zindler curves in normed planes. Canad. Math. Bull. 55(4), 767–773 (2012)

    Article  MathSciNet  Google Scholar 

  • Neumann, B.H.: On invariant of plane regions and mass distribution. J. Lond. Math. Soc. 20, 226–237 (1945)

    Article  MathSciNet  Google Scholar 

  • Schneider, R.: Convex Bodies: the Brunn-Minkowski theory. Encyclopedia of Mathematics and its Applications, Vol. 151, Cambridge University Press, Cambridge (2014)

  • Soltan, V.: Affine diameters of convex bodies-a survey. Expo. Math. 23(1), 47–63 (2005)

    Article  MathSciNet  Google Scholar 

  • Steiger, W., Szegedy, M., Zhao, J.: Six-way equipartitioning by three lines in the plane, Proceedings of the 22nd Canadian Conference on Computational Geometry, Winnipeg, August (2010)

  • Yates, R. C.: A Handbook on Curves and Their Properties, J. W. Edwards, Ann Arbor, Mich. (1947)

  • Zamfirescu, T.: On planar continuous families of curves. Canad. J. Math. 21, 513–530 (1969)

    Article  MathSciNet  Google Scholar 

  • Zamfirescu, T.: Les courbes fermées doubles sans points triples associées à une famille continue. (French) Israel J. Math. 7, 69–89 (1969)

  • Zamfirescu, T.: Sur les familles continues de courbes I-V. (French) Atti Acad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. (8): (I) 42 (1967), 771–774; (II) 43 (1967), 13–17; (III) 44 (1968), 639–642; (IV) 44 (1968), 753–758; (V) 53, 505–507 (1972)

  • Zamfirescu, T.: On continuous families of curves VI. Geom. Dedicata 10(1–4), 205–217 (1981)

    Article  MathSciNet  Google Scholar 

  • Zamfirescu, T., Zucco, A.: Continuous families of smooth curves and Grünbaum’s conjecture. Canad. Math. Bull. 27(3), 345–350 (1984)

    Article  MathSciNet  Google Scholar 

  • Zindler, K.: Über konvexe Gebilde. Monatsh. Math. Phys. 31(1), 25–56 (1921)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Stefan Catoiu’s research was supported in part by Faculty Summer Research Grants from the University Research Council (2017) and the College of Science and Health (2019) at DePaul University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Catoiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Feb. 26, 2021. This paper is in final form and no version of it will be submitted for publication elsewhere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berele, A., Catoiu, S. The classification of convex polygons with triangular area or perimeter bisecting deltoids. Beitr Algebra Geom 63, 95–114 (2022). https://doi.org/10.1007/s13366-021-00572-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13366-021-00572-5

Keywords

Mathematics Subject Classification

Navigation