[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Extension in the approaches to treat cancer through siRNA system: a beacon of hope in cancer therapy

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Along with the evolutionary breakthrough of RNA interference and the applicability for gene knockdown, a subsequent development in siRNA-based therapeutics has been attained. The gene therapy based on RNAi is in transition progress from the research aspects to clinical base. Being a potent tool, siRNA is used as therapeutic against several disorders. Cancer which is one of the deadliest diseases is now treated with an advanced mechanism of siRNA delivery inside the genome, leading to gene silencing; thereby, blocking translation of gene to form protein. siRNA tool delivers remedial effects with the advantages of safe delivery and efficiency. Despite its merits, barriers including instability at physiological conditions, lack of ability to cross biological membranes, off-targets, and safety are also associated with siRNA delivery system. The gene silencing efficiency values both in vitro and in vivo reported in the past years have been reviewed by material type (lipid, polymer, silica, porous silicon, and metal). This review presents a deep insight in the development of targeted delivery of siRNA. Since several clinical trials have also been performed regarding the siRNA delivery against cancer, it can also be stated that the delivery system should be good enough to achieve effective siRNA drug development.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. World Health Organization. International Agency for Research on Cancer (IARC). 2018.

  2. Luo J, Solimini NL, Elledge SJ. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell. 2009;136:823–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wheeler DA, Wang L. From human genome to cancer genome: the first decade. Genome Res. 2013;23(7):1054–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tong WY, Alnakhli M, Bhardwaj R, Sinoula A, Sougata S, Fraser C, Kuche T, Kuss B, Voelcker NH. Delivery of siRNA in vitro and in vivo using PEI-capped porous silicon nanoparticles to silence MRP1 and inhibit proliferation in glioblastoma. J Nanobiotechnology. 2018;16(1):38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Artiga Á, Serrano-Sevilla I, De Matteis L, Mitchell SG, de la Fuente JM. Current status and future perspectives of gold nanoparticle vectors for siRNA delivery. J Mater Chem B. 2019;7(6):876–96.

    Article  CAS  PubMed  Google Scholar 

  6. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010;464:1067–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim B, Park JH, Sailor MJ. Rekindling RNAi therapy: materials design requirements for in vivo siRNA delivery. Advance Materials. 2019;1903637:1–23.

    Google Scholar 

  8. Cong F, Jun W. Delivery systems for siRNA drug development in cancer therapy. Asian J Pharm Sci. 2014;10:1–12.

    Google Scholar 

  9. Mahmoodi Chalbatani G, Dana H, Gharagouzloo E, Grijalvo S, Eritja R, Logsdon CD, Memari F, Miri SR, Rad MR, Marmari V. Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach. Int J Nanomedicine. 2019;14:3111–28.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, Noronha A, Manoharan M, Akira S, de Fougerolles A, Endres S, Hartmann G. Sequence-specific potent induction of IFN-aby short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med. 2005;11:263–70.

    Article  CAS  PubMed  Google Scholar 

  11. Jackson AL, Linsley PS. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov. 2010;9:57–67.

    Article  CAS  PubMed  Google Scholar 

  12. Marques JT, Williams BR. Activation of the mammalian immune system by siRNAs. Nat Biotechnol. 2005;23:1399–405.

    Article  CAS  PubMed  Google Scholar 

  13. Riley RS, Dang MS, Billingsley MM, Abraham B, Gundlach L, Day ES. Evaluating the mechanisms of light-triggered siRNA release from nanoshells for temporal control over gene regulation. Nano Lett. 2018;18:3565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004;303:1526–9.

    Article  CAS  PubMed  Google Scholar 

  15. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004;5:987–95.

    Article  CAS  PubMed  Google Scholar 

  16. Bumcrot D, Manoharan M, Koteliansky V, Sah DW. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol. 2006;2:711–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dominska M, Dykxhoorn DM. Breaking down the barriers siRNA delivery and endosome escape. J Cell Sci. 2010;123:1183–9.

    Article  CAS  PubMed  Google Scholar 

  18. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and bio-distribution of polymeric nanoparticles. Mol Pharm. 2008;5:505–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond). 2016;11(6):673–92.

    Article  CAS  Google Scholar 

  20. Van de Water FM, Boerman OC, Wouterse AC, Peters JG, Russel FG, Masereeuw R. Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules. Drug Metab Dispos. 2006;34:1393–7.

    Article  PubMed  CAS  Google Scholar 

  21. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Larson SD, Jackson LN, Chen LA, Rychahou PG, Evers BM. Effectiveness of siRNA uptake in target tissues by various delivery methods. Surgery. 2007;142:262–9.

    Article  PubMed  Google Scholar 

  23. Schultz N, Marenstein DR, De Angelis DA, Wang WQ, Nelander S, Jacobsen A, Marks DS, Massague J, Sander C. Off-target effects dominate a large-scale RNAi screen for modulators of the TGF-pathway and reveal microRNA regulation ofTGFBR2. Silence. 2011;2:1–20.

    Article  CAS  Google Scholar 

  24. Wang Z, Li S, Zhang M, Ma Y, Liu Y, Gao W, Zhang J, Gu Y. Laser-triggered small interfering RNA releasing gold nanoshells against heat shock protein for sensitized photothermal therapy. Adv Sci (Weinh). 2016;4(2):1600327.

    Article  CAS  Google Scholar 

  25. Conde J, Ambrosone A, Sanz V, Hernandez Y, Marchesano V, Tian F, Child H, Berry CC, Ibarra MR, Baptista PV, Tortiglione C, de la Fuente JM. Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing. ACS Nano. 2012;6:8316–24.

    Article  CAS  PubMed  Google Scholar 

  26. Mahajan UM, Teller S, Sendler M, Palankar R, Van den Brandt C, Schwaiger T, Kuhn JP, Ribback S, Glockl G, Evert M, Weitschies W, Hosten N, Dombrowski F, Delcea M, Weiss FU, Lerch MM, Mayerle J. Tumour specific delivery of siRNA-coupled superparamagnetic iron oxide nanoparticles, targeted against PLK1, stops progression of pancreatic cancer. Gut. 2016;65:1838–49.

    Article  CAS  PubMed  Google Scholar 

  27. Scherr M, Battmer K, Winkler T, Heidenreich O, Ganser A, Eder M. Specific inhibition of her abl gene expression by small interfering RNA. Blood 2003;101:1566–1569.

  28. Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell. 2002;2:243–7.

    Article  CAS  PubMed  Google Scholar 

  29. Choudhury A, Charo J, Parapuram SK, Hunt RC, Hunt DM, Seliger B, Kiessling R. Small interfering RNA (siRNA) inhibits the expression of the Her2/neu gene, up-regulates HLA class 1 and induces apoptosis of HER2/neu positive tumor cell lines. Int J Cancer. 2004;108: 71–7.

  30. Naito Y, Yoshimura J, Morishita S, Ui-Tei K. siDirect 2.0:updated software for designing functional siRNA with reduced seed-dependent off-target effect. BioMed Central 2009;10–392.

  31. Luck S, Kreszies T, Strickert M, Schweizer Kuhlmann M, Douchkov D. siRNA-Finder (si-Fi) Software for RNAi-target design and off-target prediction. Front Plant Sci. 2019;10:1–12.

    Article  CAS  Google Scholar 

  32. Qie Y, Yuan H, Von Roemeling CA, Chen Y, Liu X, Shih KD, Knight JA, Tun HW, Wharen RE, Jiang W, Kim BYS. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes Sci Rep. 2016;6:26269.

    CAS  PubMed  Google Scholar 

  33. Nogawa M, Yuasa T, Kimura S, Tanaka M, Kuroda J, Sato K, Yokota A, Segawa H, Toda Y, Kageyama S, Yoshiki T, Okada Y, Maekawa T. Intravesical administration of small interfering RNA targeting PLK-1 successfully prevents the growth of bladder cancer. J Clin Invest. 2005;115:978–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Song E, Zhu P, Lee SK, Choudhary D, Kussman S, Dykxhoorn DM, Feng Y, Palliser D, Weiner DB, Shankar P, Marasco WA, Lieberman J. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol. 2005;23:709–17.

    Article  CAS  PubMed  Google Scholar 

  35. Kaddah S, Khreich N, Kaddah F, Charcosset C, Greige-Gerges H. Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. Food Chem Toxicol. 2018;113:40–8.

    Article  CAS  PubMed  Google Scholar 

  36. Pinnapireddy SR, Duse L, Strehlow B, Schäfer J, Bakowsky U. Composite liposome-PEI/nucleic acid lipopolyplexes for safe and efficient gene delivery and gene knockdown. Colloids Surf B Biointerfaces. 2017;158:93–101.

    Article  CAS  PubMed  Google Scholar 

  37. Whitehead KA, Langer R, Anderson DG. Knocking downbarriers: advances in siRNA delivery. Nat Rev Drug Discov. 2009;8:129–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Deleavey GF, Damha MJ. Designing chemically modified oligonucleotides for targeted gene silencing. Chem Biol. 2012;19:937–54.

    Article  CAS  PubMed  Google Scholar 

  39. Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med. 2012;63:185–98.

    Article  CAS  Google Scholar 

  40. Malek A, Merkel O, Fink L, Czudbayko F, Kissel T, Aigner A. In vivo pharmacokinetics, tissue distribution and underlying mechanisms of various PEI (-PEG)/siRNA complexes. Toxicol Appl Toxicol. 2009;236:97–108.

    CAS  Google Scholar 

  41. Akinc A, Querbes W, De S, Qin J, Frank-Kamenetsky M, Jayaprakash KN, Jayaraman M, Rajeev KG, Cantley WL, Dorkin JR, Butler, JS, Qin L, Racie T, Sprague A, Fava E, Zeigerer A, Hope MJ, Zerial M, Sah, DW, Fitzgerald K, Tracy MA, Manoharan M, Koteliansky V, Fougerolles Ad, Maier MA. Targeted delivery of RNAitherapeutics with endogenous and exogenous ligand-basedmechanisms. Mol Ther 2010;18:1357–1364.

  42. Wang D, Lin J, Jia F, Tan X, Wang Y, Sun X, Cao X, Che F, Lu H, Gao X, Shimkonis JC, Nyoni Z, Lu X, Zhang K. Bottlebrush-architectured poly(ethylene glycol) as an efficient vector for RNA interference in vivo. Sci Adv. 2019;5(2):9322.

    Article  CAS  Google Scholar 

  43. Jarad G, Miner JH. Update on the glomerular filtration barrier. Curr Opin Nephrol Hypertens. 2009;18:226.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lee H, Lytton-Jean AKR, Chen Y, Love KT, Park AI, Karagiannis ED, Sehgal A, Querbes W, Zurenko CS, Jayaraman M, Peng CG, Charisse K, Borodovsky A, Manoharan M, Donahoe JS, Truelove J, Nahrendorf M, Langer R, Anderson DG. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivosiRNA delivery. Nat Nano technol. 2012;7:389–93.

    Article  CAS  Google Scholar 

  45. Rozema DB, Lewis DL, Wakefield DH, Wong SC, Clein JJ, Roesch PL, Bertin SL, Reppen TW, Chu Q, Blokhin AV, Hagstrom JE, Wolff JA. DynamicPolyConjugates for targeted in vivo delivery of siRNA tohepatocytes. Proceddings of National Academy of Science. 2007;104:12982–7.

    Article  CAS  Google Scholar 

  46. Yu B, Zhao X, Lee LJ, Lee RJ. Targeted delivery systems for oligonucleotide therapeutics. AAPS J. 2009;11:195–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, Kelly PM, Aberg C, Mahon E, Dawson KA. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. NatNanotechnol. 2013;8:137–43.

    CAS  Google Scholar 

  48. Bolhassani A. Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochim Biophys Acta-Rev Cancer. 2011;1816:232–46.

    Article  CAS  Google Scholar 

  49. Bitko V, Musiyenko A, Shulyayeva O, Barik S. Inhibition of respiratory viruses by nasally administered siRNA. Nature Med. 2005;11:50–5.

    Article  CAS  PubMed  Google Scholar 

  50. Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N, Bacallado SA, Nguyen DN, Fuller J, Alvarez R, Borodovsky A, Borland T, Constien R, de Fougerolles A, Dorkin JR, Narayanannair Jayaprakash K, Jayaraman M, John M, Koteliansky V, Manoharan M, Nechev L, Qin J, Racie T, Raitcheva D, Rajeev KG, Sah DW, Soutschek J, Toudjarska I, Vornlocher HP, Zimmermann TS, Langer R, Anderson DG. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nature Biotech. 2008;26:561–569.

  51. Grzelinski M, Urban-Klein B, Martens T, Lamszus K, Bakowsky U, Höbel S, Czubayko F, Aigner A. RNA interference-mediated gene silencing of pleiotrophin through polyethyleniminecomplexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts. Hum. Gene Ther. 2006;17:751–766.

  52. Wang Y, Li Z, Han Y, Liang LH, Ji A. Nanoparticle-based delivery system for application of siRNA in vivo. CurrentDrug Metabolism. 2010;11(2):182–96.

    CAS  Google Scholar 

  53. Dande P, Prakash TP, Sioufi N, Gaus H, Jarres R, Berdeja A, Swayze EE, Griffey RH, Bhat B. Improving RNA interference in mammalian cells by 40-thio-modified small interfering RNA (siRNA): effect on siRNA activity and nuclease stability when used in combination with 20-O-alkyl modifications. J Med Chem. 2006;49:1624–34.

    Article  CAS  PubMed  Google Scholar 

  54. Hall AH, Wan J, Shaughnessy EE, Ramsay Shaw B, Alexander KA. RNA interference using borano phosphate siRNAs: structure-activity relationships. Nucleic Acids Res. 2004;32:5991–6000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Miller A, Tanner J. Essentials of chemical biology: structure and dynamics of biological macromolecules. Chichester: John Wiley & Sons; 2008.

    Google Scholar 

  56. Turanek J, Miller AD, Kauerova Z, Lukac R, Masek J, Koudelka S, Raska M. Chapter 4: Lipid Based Nanoparticles and Microbubbles-Multifunctional Lipid-Based Biocompatible Particles for in vivo Imaging and Theranostics. Advances in Bio Engineering Intech 2015;79–116.

  57. Miller AD. Delivery of RNAi therapeutics: work in progress. Expert Rev Med Devices. 2013;10(6):781–811.

    Article  CAS  PubMed  Google Scholar 

  58. Fenske DB, Cullis PR. Liposomal nanomedicines. Expert Opin Drug Deliv. 2008;5(1):25–44.

    Article  CAS  PubMed  Google Scholar 

  59. Wu SY, McMillan NAJ. Lipidic systems for in vivo siRNA delivery. AAPS Journal. 2009;11(4):639–52.

    Article  CAS  Google Scholar 

  60. Landen CN Jr, Chavez-Reyes A, Bucana C, Schmandt R, Deavers MT, Lopez-Berestein G, Sood AK. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Can Res. 2005;65(15):6910–8.

    Article  CAS  Google Scholar 

  61. Halder J, Kamat AA, Landen CN Jr, Han LY, Lutgendorf SA, Lin YG, Merritt WM, Jennings NB, Chavez-Reyes A, Coleman RL, Gershenson DM, Schmandt R, Cole SW, Lopez-Berestein G, Sood AK. Focal adhesion kinase targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy. Clin Cancer Res. 2006;12(16):4916–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. NCI Update. EphA2 siRNA in Treating Patients with advanced or recurrent solid tumors. 2012. http://www.clinicaltrials.gov/ct2/show/NCT01591356.

  63. Ozpolat B, Sood AK, Lopez-Berestein G. Nanomedicine-based approaches for the delivery of siRNA in cancer. J Intern Med. 2010;267(1):44–53.

    Article  CAS  Google Scholar 

  64. Taetz S, Bochot A, Surace C, Arpicco S, Renoir JM, Schaefer UF, Marsaud V, Kerdine-Roemer S, Lehr CM, Fattal E. Hyaluronic acid-modified DOTAP/DOPE liposomes for the targeted delivery of anti-telomerase siRNA to CD44-expressing lung cancer cells. Oligonucleotides. 2009;19(2):103–16.

    Article  CAS  PubMed  Google Scholar 

  65. Ewe A, Panchal O, Pinnapireddy SR, Bakowsky U, Przybylski S, Temme A, Aigner A. Liposome-polyethylenimine complexes (DPPC-PEI lipopolyplexes) for therapeutic siRNA delivery in vivo. Nanomedicine. 2017;13(1):209–18.

    Article  CAS  PubMed  Google Scholar 

  66. Jin J, Bae KH, Yang H, Lee SJ, Kim H, Kim Y, Juu KM, Seo SW, Park TG, Nam DH. In vivo specific delivery of c-MetsiRNA to glioblastoma using cationic solid lipid nanoparticles. Bioconjug Chem. 2011;22(12):2568–72.

    Article  CAS  PubMed  Google Scholar 

  67. Jeffs LB, Palmer LR, Ambegia EG, Giesbrecht C, Ewanick S, MacLachlan I. A scalable, extrusion-free method for efficient liposomal encapsulation of plasmid DNA. Pharm Res. 2005;22(3):362–72.

    Article  CAS  PubMed  Google Scholar 

  68. Kim B, Sun S, Varner JA, Howell SB, Ruoslahti E, Sailor MJ. Securing the payload, finding the cell, and avoiding the endosome: peptide-targeted, fusogenic porous silicon nanoparticles for delivery of siRNA. Adv Mater. 2019;31(35):1902952.

    Article  CAS  Google Scholar 

  69. Judge AD, Robbins M, Tavakoli I, Levi J, Hu L, Fronda A, Ambegia E, McClintok K, MacLachlan I. Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. J Clin Invest. 2009;119:661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang X, Wang Y, Chen ZG, Shin DM. Advances of cancer therapy by nanotechnology. Cancer Res Treat. 2009;41:1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Miele E, Spinelli GP, Miele E, Tomao F, Tamao S. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int J Nanomed. 2009;4:99–105.

    CAS  Google Scholar 

  72. Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang CC, Ueda M, Kristen AV, Tournev I, Schmidt HH, Coelho T, Berk JL, Lin KP, Vita G, Attarian S, Plante-Bordeneuve V, Mezei MM, Campistol JM, Buades J, Brannagan TH 3rd, Kim BJ, Oh J, Parman Y, Sekijima Y, Hawkins PN, Solomon SD, Polydefkis M, Dyck PJ, Gandhi PJ, Goyal S, Chen J, Strahs AL, Nochur SV, Sweetser MT, Garg PP, Vaishnaw AK, Gollob JA, Suhr OB. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018;379(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  73. Nair JK, Attarwala H, Sehgal A, Wang Q, Aluri K, Zhang X, Gao M, Liu J, Indrakanti R, Schofield S, Kretschmer P, Brown CR, Gupta S, Willoughby JLS, Boshar JA, Jadhav V, Charisse K, Zimmermann T, Fitzgerald K, Manoharan M, Rajeev KG, Akinc A, Hutabarat R, Maier MA. Impact of enhanced metabolic stability on pharmacokinetics and pharmacody- namics of GalNAc-siRNA conjugates. Nucleic Acids Res. 2017;45(19):10969–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Foster DJ, Brown CR, Shaikh S, Trapp C, Schlegel MK, Qian K, Sehgal A, Rajeev KG, Jadhav V, Manoharan M, Kuchimanchi S, Maier MA, Milstein S. Advanced siRNA designs further improve in vivo performance of GalNAc-siRNA conjugates. Mol Ther. 2018;26(3):708–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen C, Posocco P, Liu X, Cheng Q, Laurini E, Zhou J, Liu C, Wang Y, Tang J, Col VD, Yu T, Giorgio S, Fermeglia M, Qu F, Liang Z, Rossi JJ, Liu M, Rocchi P, Pricl S, Peng L. Mastering dendrimer self-assembly for efficient siRNA delivery: from conceptual design to in vivo efficient gene silencing. Small. 2016;12(27):3667–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Feldmann DP, Cheng Y, Kandil R, Xie Y, Mohammadi M, Harz H, Sharma A, Peeler DJ, Moszczynska A, Leonhardt H, Pun SH, Merkel OM. In vitro and in vivo delivery of siRNA via VIPER polymer system to lung cells. J Controlled Release. 2018;276:50–8.

    Article  CAS  Google Scholar 

  77. Navarro G, Sawant RR, Biswas S, Essex S. Tros de Ilarduya C, Torchilin VPP-glycoprotein silencing with siRNA delivered by DOPE-modified PEIover comes doxorubicin resistance in breast cancer cells. Nano medicine. 2012;7:65–78.

    CAS  Google Scholar 

  78. Sun TM, Du JZ, Yan LF, Mao HQ, Wang J. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials. 2008;29:4348–55.

    Article  CAS  PubMed  Google Scholar 

  79. Jilek S, Merkle HP, Walter E. DNA-loaded biodegradable microparticles as vaccine delivery systems and their interaction with dendritic cells. Adv Drug Deliv Rev. 2005;57:377–90.

    Article  CAS  PubMed  Google Scholar 

  80. Woodrow KA, Cu Y, Booth CJ, Saucier-Sawyer JK, Wood MJ, Saltzman WM. Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat Mater. 2009;8:526–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang XZ, Dou S, Sun TM, Mao CQ, Wang HX, Wang J. Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. J Control Release. 2011;156:203–11.

    Article  CAS  PubMed  Google Scholar 

  82. Wu C, Li J, Wang W, Hammond PT. Rationally designed polycationic carriers for potent polymeric siRNA-mediated gene silencing. ACS Nano. 2018;12(7):6504–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jeong JH, Mok H, Oh YK, Park TG. siRNA conjugate delivery systems. Bioconjug Chem. 2008;20:5–14.

    Article  CAS  Google Scholar 

  84. Wolfrum C, Shi S, Jayaprakash KN, Jayaraman M, Wang G, Pandey RK, Rajeev KG, Nakayama T, Charrise K, Ndungo EM, Zimmermann T, Koteliansky V, Manoharan M, Stoffel M. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol. 2007;25:1149–57.

    Article  CAS  PubMed  Google Scholar 

  85. Alzhrani R, Alsaab HO, Petrovici A, Bhise K, Vanamala K, Sau S, Krinock MJ, Iyer AK. Improving the therapeutic efficiency of noncoding RNAs in cancers using targeted drug delivery systems. Drug Discov Today. 2020;25(4):718–30.

    Article  CAS  PubMed  Google Scholar 

  86. Chiu YL, Ali A, Chu C, Cao H, Rana TM. Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem Biol. 2004;11:1165–75.

    Article  CAS  PubMed  Google Scholar 

  87. Moschos SA, Jones SW, Perry MM, Williams AE, Erjefalt JS, Turner JJ, Barnes PJ, Sproat BS, Gait MJ, Lindsay MA. Lung delivery studies using siRNA conjugated to TAT (48–60) and penetrate in reveal peptide induced reduction in gene expression and induction of innate immunity. BioconjugChem. 2007;18:1450–9.

    CAS  Google Scholar 

  88. Cesarone G, Edupuganti OP, Chen CP, Wickstrom E. Insulin receptor substrate 1 knockdown in human MCF7 ERþ breast cancer cells by nuclease-resistant IRS1 siRNA conjugated to a disulfide-bridged D-peptide analogue of insulin-like growth factor 1. Bioconjug Chem. 2007;18:1831–40.

    Article  CAS  PubMed  Google Scholar 

  89. Xia CF, Zhang Y, Zhang Y, Boado RJ, Pardridge WM. Intravenous siRNA of brain cancer with receptor targeting and avidin biotin technology. Pharm Res. 2007;24:2309–16.

    Article  CAS  PubMed  Google Scholar 

  90. Chu TC, Twu KY, Ellington AD, Levi M. Aptamer mediated siRNA delivery. Nucleic Acids Res. 2006;34:73.

    Article  CAS  Google Scholar 

  91. Shen S, Mao CQ, Yang XZ, Du XJ, Liu Y, Zhu YH, Wang J. Cationic lipid-assisted polymeric nanoparticles-mediated GATA2 siRNA delivery for synthetic lethal therapy of KRAS mutant non-small-cell lung carcinoma. Mol Pharm. 2014;11:2612–22.

    Article  CAS  PubMed  Google Scholar 

  92. Hori S, Herrera A, Rossi JJ, Zhou J. Current advances in aptamers for cancer diagnosis and therapy. Cancers. 2018;10(1):9.

    Article  PubMed Central  CAS  Google Scholar 

  93. Greening DW, Xu R, Gopal SK, Rai A, Simpson RJ. Proteomic insights into extracellular vesicle biology - defining exosomes and shed microvesicles. Expert Rev Proteomics. 2017;14(1):69–95.

    Article  CAS  PubMed  Google Scholar 

  94. Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan MLG, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang Z, Milosevic J, Tkacheva OA, Divito SJ, Jordan R, Lyons-Weiler J, Watkins SC, Morelli AE. Mechanismof transfer of functional microRNAs between mousedendritic cells via exosomes. Blood. 2012;119:756–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. William H, Zhang XQ, Xu X. Biomaterials in siRNA Delivery: A Comprehensive Review. Wiley Online Library. 2016.

  96. De Fougerolles A, Novobrantseva T. siRNA and the lung: research tool or therapeutic drug? Curr Opin Pharmacol. 2008;8:280–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R, Yin VP, Lockman P, Bai S. Pharmaceutical research. 2015;32(6).

Download references

Acknowledgements

Authors thank to Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand, India, for providing high speed Internet connectivity.

Author information

Authors and Affiliations

Authors

Contributions

Indra Rautela and Aditi Sharma carried information retrieval and compilation; Pallavi Dheer, Priya Thapliyal, and Shweta Sahni made first draft of the manuscript; Vimlendu Bhushan Sinha critically reviewed the manuscript and finalized the manuscript in current form; Manish Dev Sharma conceptualized, supervised, and finalized the manuscript for publication.

Corresponding author

Correspondence to Manish Dev Sharma.

Ethics declarations

Consent for publication

Taking from all the authors.

Conflict interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rautela, I., Sharma, A., Dheer, P. et al. Extension in the approaches to treat cancer through siRNA system: a beacon of hope in cancer therapy. Drug Deliv. and Transl. Res. 12, 1002–1016 (2022). https://doi.org/10.1007/s13346-021-00995-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-00995-6

Keywords

Navigation