[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Time-varying volume visualization: a survey

  • Review Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Time-varying volume data is often generated from scientific simulations in a variety of application domains, such as computational fluid dynamics, combustion science, and computational cosmology. Data visualization plays an important role in analyzing the dynamics and evolution of phenomena hidden in the data. Over the last two decades, a substantial amount of visualization techniques have been proposed in this research area. In this paper, we systematically review the recent literature on data visualization and visual analytics for time-varying scalar volume data. We first collect a corpus of relevant technical and application papers in visualization journals and conferences from 2008 to 2019. Based on this corpus, we classify these techniques into three aspects, including feature tracking, evolution visualization, and rendering, and then detaily describe relevant techniques in these three aspects. Finally, we conclude this survey with emerging trends and future challenges in time-varying volume visualization.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. This figure is from the slides by Wathsala Widanagamaachchi at the conference on IEEE Symposium on Large Data Analysis and Visualization, 2012, Page 17.

  2. This figure is from the slides by Eamonn Keogh from tutorial in SIGKDD 2007. Mining Shape and Time Series Databases with Symbolic Representations. August 12, 2007, Page 51.

References

  • Akiba H, Wang C, Ma KL (2010) Aniviz: a template-based animation tool for volume visualization. IEEE Comput Graph Appl 30(5):61–71

    Google Scholar 

  • Ayala D, Campos Miralles J, Ferré M, Grau S, Puig Puig A, Tost D (2005) Time-varying volume visualization. Tech. rep. http://hdl.handle.net/2117/9360

  • Bai Z, Tao Y, Lin H (2019) Featureflow: exploring feature evolution for time-varying volume data. J Vis 22(5):927–940

    Google Scholar 

  • Bremer PT, Weber GH, Tierny J, Pascucci V, Day MS, Bell JB (2009) A topological framework for the interactive exploration of large scale turbulent combustion. In: 2009 Fifth IEEE international conference on e-science, pp 247–254

  • Bremer PT, Weber G, Pascucci V, Day M, Bell J (2010) Analyzing and tracking burning structures in lean premixed hydrogen flames. IEEE Trans Visual Comput Graph 16(2):248–260

    Google Scholar 

  • Bremer PT, Weber G, Tierny J, Pascucci V, Day M, Bell J (2011) Interactive exploration and analysis of large-scale simulations using topology-based data segmentation. IEEE Trans Visual Comput Graph 17(9):1307–1324

    Google Scholar 

  • Doraiswamy H, Natarajan V, Nanjundiah RS (2013) An exploration framework to identify and track movement of cloud systems. IEEE Trans Visual Comput Graph 19(12):2896–2905

    Google Scholar 

  • Du ZD, Chiang YJ, Shen HW (2009) Out-of-core volume rendering for time-varying fields using a space-partitioning time (spt) tree. In: 2009 IEEE Pacific visualization symposium, pp 73–80

  • Dutta S, Shen HW (2016) Distribution driven extraction and tracking of features for time-varying data analysis. IEEE Trans Visual Comput Graph 22(1):837–846

    Google Scholar 

  • Edelsbrunner H, Harer J, Mascarenhas A, Pascucci V, Snoeyink J (2008) Time-varying reeb graphs for continuous space-time data. Comput Geom 41(3):149–166

    MathSciNet  MATH  Google Scholar 

  • Frey S, Ertl T (2017) Flow-based temporal selection for interactive volume visualization. Comput Graph Forum 36(8):153–165

    Google Scholar 

  • Gobbetti E, Iglesias Guitián JA, Marton F (2012) Covra: a compression-domain output-sensitive volume rendering architecture based on a sparse representation of voxel blocks. Comput Graph Forum 31(3pt4):1315–1324

    Google Scholar 

  • Graphviz-graph visualization software. http://www.graphviz.org/. Accessed 23 Oct 2018

  • Gu Y, Wang C (2011) Transgraph: hierarchical exploration of transition relationships in time-varying volumetric data. IEEE Trans Visual Comput Graph 17(12):2015–2024

    Google Scholar 

  • Gu Y, Wang C (2013) itree: exploring time-varying data using indexable tree. In: 2013 IEEE Pacific visualization symposium (PacificVis), pp 137–144. IEEE (2013)

  • Gu Y, Wang C, Peterka T, Jacob R, Kim SH (2016) Mining graphs for understanding time-varying volumetric data. IEEE Trans Visual Comput Graph 22(1):965–974

    Google Scholar 

  • He X, Tao Y, Wang Q, Lin H (2019) Multivariate spatial data: a survey. J Vis 22(5):897–912

    Google Scholar 

  • Jang Y, Ebert DS, Gaither K (2012) Time-varying data visualization using functional representations. IEEE Trans Visual Comput Graph 18(3):421–433

    Google Scholar 

  • Johnson C (2004) Top scientific visualization research problems. IEEE Comput Graph Appl 24(4):13–17

    Google Scholar 

  • Joshi A, Caban J, Rheingans P, Sparling L (2009) Case study on visualizing hurricanes using illustration-inspired techniques. IEEE Trans Visual Comput Graph 15(5):709–718

    Google Scholar 

  • Ko CL, Liao HS, Wang TP, Fu KW, Lin CY, Chuang JH (2008) Multi-resolution volume rendering of large time-varying data using video-based compression. In: 2008 IEEE Pacific visualization symposium, pp 135–142

  • Krone M, Reina G, Schulz C, Kulschewski T, Pleiss J, Ertl T (2013) Interactive extraction and tracking of biomolecular surface features. Comput Graph Forum 32(3pt3):331–340

    Google Scholar 

  • Kumpf A, Rautenhaus M, Riemer M, Westermann R (2019) Visual analysis of the temporal evolution of ensemble forecast sensitivities. IEEE Trans Visual Comput Graph 25(1):98–108

    Google Scholar 

  • Laney D, Bremer PT, Mascarenhas A, Miller PL, Pascucci V (2006) Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities. IEEE Trans Visual Comput Graph 12(5):1053–1060

    Google Scholar 

  • Lee TY, Shen HW (2009a) Visualization and exploration of temporal trend relationships in multivariate time-varying data. IEEE Trans Visual Comput Graph 15(6):1359–1366

    Google Scholar 

  • Lee TY, Shen HW (2009) Visualizing time-varying features with tac-based distance fields. In: Proceedings of the 2009 IEEE Pacific visualization symposium, PACIFICVIS’09, pp. 1–8. IEEE Computer Society, Washington, DC

  • Ljung P, Krüger J, Groller E, Hadwiger M, Hansen CD, Ynnerman A (2016) State of the art in transfer functions for direct volume rendering. Comput Graph Forum 35(3):669–691

    Google Scholar 

  • Lu A, Shen HW (2008) Interactive storyboard for overall time-varying data visualization. In: 2008 IEEE Pacific visualization symposium, pp 143–150

  • Lukasczyk J, Aldrich G, Steptoe M, Favelier G, Gueunet C, Tierny J, Maciejewski R, Hamann B, Leitte H (2017a) Viscous fingering: a topological visual analytic approach. Appl Mech Mater 869(8):9–19

    Google Scholar 

  • Lukasczyk J, Weber GH, Maciejewski R, Garth C, Leitte H (2017b) Nested tracking graphs. Comput Graph Forum 36(3):12–22

    Google Scholar 

  • Ma KL (2003) Visualizing time-varying volume data. Comput Sci Eng 5(2):34–42

    Google Scholar 

  • Mascarenhas A, Snoeyink J (2009) Isocontour based visualization of time-varying scalar fields. Springer, Berlin, pp 41–68

    MATH  Google Scholar 

  • Muelder C, Ma KL (2009) Interactive feature extraction and tracking by utilizing region coherency. In: 2009 IEEE Pacific visualization symposium, pp 17–24

  • Oesterling P, Heine C, Weber GH, Morozov D, Scheuermann G (2015) Computing and visualizing time-varying merge trees for high-dimensional data. In: Topological methods in data analysis and visualization IV. Springer, Cham, pp 87–101

  • Ozer S, Wei J, Silver D, Ma KL, Martin P (2012) Group dynamics in scientific visualization. In: IEEE symposium on large data analysis and visualization (LDAV), pp 97–104

  • Ozer S, Silver D, Bemis K, Martin P (2014) Activity detection in scientific visualization. IEEE Trans Vis Comput Graph 20(3):377–390

    Google Scholar 

  • Ponchio F, Hormann K (2008) Interactive rendering of dynamic geometry. IEEE Trans Visual Comput Graph 14(4):914–925

    Google Scholar 

  • Reh A, Amirkhanov A, Kastner J, Gröller E, Heinzl C (2015) Fuzzy feature tracking: Visual analysis of industrial 4d-xct data. In: Proceedings of the 31st spring conference on computer graphics, pp 131–131

  • Saikia H, Weinkauf T (2017) Global feature tracking and similarity estimation in time-dependent scalar fields. Comput Graph Forum 36(3):1–11

    Google Scholar 

  • Samtaney R, Silver D, Zabusky N, Cao J (1994) Visualizing features and tracking their evolution. Computer 27(7):20–27

    Google Scholar 

  • Sauer F, Yu H, Ma L (2014) Trajectory-based flow feature tracking in joint particle/volume datasets. IEEE Trans Visual Comput Graph 20(12):2565–2574

    Google Scholar 

  • Shen HW, Chiang LJ, Ma KL (1999) A fast volume rendering algorithm for time-varying fields using a time-space partitioning (tsp) tree. In: Proceedings visualization’99 (Cat. No.99CB37067), pp 371–545

  • Silver D, Wang X (1997) Tracking and visualizing turbulent 3d features. IEEE Trans Visual Comput Graph 3(2):129–141

    Google Scholar 

  • Takle J, Silver D, Heitmann K (2012) A case study: tracking and visualizing the evolution of dark matter halos and groups of satellite halos in cosmology simulations. In: 2012 IEEE conference on visual analytics science and technology (VAST), pp 243–244

  • Tikhonova A, Correa CD, Ma KL (2010) An exploratory technique for coherent visualization of time-varying volume data. Comput Graph Forum 29(3):783–792

    Google Scholar 

  • Tong X, Lee TY, Shen HW (2012) Salient time steps selection from large scale time-varying data sets with dynamic time warping. In: IEEE symposium on large data analysis and visualization (LDAV), pp 49–56

  • Valsangkar AA, Monteiro JM, Narayanan V, Hotz I, Natarajan V (2019) An exploratory framework for cyclone identification and tracking. IEEE Trans Visual Comput Graph 25(3):1460–1473

    Google Scholar 

  • Wang C, Yu H, Ma KL (2008) Importance-driven time-varying data visualization. IEEE Trans Visual Comput Graph 14(6):1547–1554

    Google Scholar 

  • Wang C, Yu H, Ma KL (2010) Application-driven compression for visualizing large-scale time-varying data. IEEE Comput Graph Appl 30(1):59–69

    Google Scholar 

  • Wang Y, Chen W, Zhang J, Dong T, Shan G, Chi X (2011) Efficient volume exploration using the gaussian mixture model. IEEE Trans Visual Comput Graph 17(11):1560–1573

    Google Scholar 

  • Wang Y, Yu H, Ma KL (2013) Scalable parallel feature extraction and tracking for large time-varying 3D volume data. In: Proceedings of the 13th eurographics symposium on parallel graphics and visualization, EGPGV’13. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, pp 17–24

  • Wang KC, Wei TH, Shareef N, Shen HW (2019) Ray-based exploration of large time-varying volume data using per-ray proxy distributions. IEEE Trans Vis Comput Graph, p 1

  • Weber G, Bremer PT, Day M, Bell J, Pascucci V (2011) Feature tracking using reeb graphs. Springer, Berlin, pp 241–253

    Google Scholar 

  • Weiss K, De Floriani L (2008) Modeling and visualization approaches for time-varying volumetric data. In: Bebis G, Boyle R, Parvin B, Koracin D, Remagnino P, Porikli F, Peters J, Klosowski J, Arns L, Chun YK, Rhyne TM, Monroe L (eds) Advances in visual computing. Springer, Berlin, pp 1000–1010

    Google Scholar 

  • Widanagamaachchi W, Christensen C, Bremer PT, Pascucci V (2012) Interactive exploration of large-scale time-varying data using dynamic tracking graphs. In: IEEE symposium on large data analysis and visualization (LDAV). IEEE, pp 9–17

  • Widanagamaachchi W, Chen J, Klacansky P, Pascucci V, Kolla H, Bhagatwala A, Bremer PT (2015) Tracking features in embedded surfaces: Understanding extinction in turbulent combustion. In: IEEE symposium on large data analysis and visualization (LDAV). IEEE, pp 9–16

  • Widanagamaachchi W, Hammond K, Lo LT, Wirth B, Samsel F, Sewell C, Ahrens J, Pascucci V (2015) Visualization and analysis of large-scale atomistic simulations of plasma-surface interactions. In: Eurographics conference on visualization (EuroVis)—short papers. The Eurographics Association

  • Widanagamaachchi W, Jacques A, Wang B, Crosman E, Bremer PT, Pascucci V, Horel J (2017) Exploring the evolution of pressure-perturbations to understand atmospheric phenomena. In: IEEE Pacific visualization symposium (PacificVis), pp 101–110

  • Wong PC, Shen HW, Johnson CR, Chen C, Ross RB (2012) The top 10 challenges in extreme-scale visual analytics. IEEE Comput Graph Appl 32(4):63–67

    Google Scholar 

  • Woodring J, Shen HW (2009a) Multiscale time activity data exploration via temporal clustering visualization spreadsheet. IEEE Trans Visual Comput Graph 15(1):123–137

    Google Scholar 

  • Woodring J, Shen HW (2009b) Semi-automatic time-series transfer functions via temporal clustering and sequencing. Comput Graph Forum 28(3):791–798

    Google Scholar 

  • Yu L, Lu A, Ribarsky W, Chen W (2010) Automatic animation for time-varying data visualization. Comput Graph Forum 29(7):2271–2280

    Google Scholar 

  • Yu L, Lu A, Chen W (2013) Visualization and analysis of 3D time-varying simulations with time lines. J Vis Lang Comput 24(5):402–418

    Google Scholar 

  • Zhou B, Chiang YJ (2018) Key time steps selection for large-scale time-varying volume datasets using an information-theoretic storyboard. Comput Graph Forum 37(3):37–49

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments. This work was supported by the National Key Research & Development Program of China (2017YFB0202203), National Natural Science Foundation of China (61672452, 61890954, and 61972343), and NSFC-Guangdong Joint Fund (U1611263).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yubo Tao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Z., Tao, Y. & Lin, H. Time-varying volume visualization: a survey. J Vis 23, 745–761 (2020). https://doi.org/10.1007/s12650-020-00654-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-020-00654-x

Keywords

Navigation