Abstract
Time-varying volume data is often generated from scientific simulations in a variety of application domains, such as computational fluid dynamics, combustion science, and computational cosmology. Data visualization plays an important role in analyzing the dynamics and evolution of phenomena hidden in the data. Over the last two decades, a substantial amount of visualization techniques have been proposed in this research area. In this paper, we systematically review the recent literature on data visualization and visual analytics for time-varying scalar volume data. We first collect a corpus of relevant technical and application papers in visualization journals and conferences from 2008 to 2019. Based on this corpus, we classify these techniques into three aspects, including feature tracking, evolution visualization, and rendering, and then detaily describe relevant techniques in these three aspects. Finally, we conclude this survey with emerging trends and future challenges in time-varying volume visualization.
Graphic abstract
Similar content being viewed by others
Notes
This figure is from the slides by Wathsala Widanagamaachchi at the conference on IEEE Symposium on Large Data Analysis and Visualization, 2012, Page 17.
This figure is from the slides by Eamonn Keogh from tutorial in SIGKDD 2007. Mining Shape and Time Series Databases with Symbolic Representations. August 12, 2007, Page 51.
References
Akiba H, Wang C, Ma KL (2010) Aniviz: a template-based animation tool for volume visualization. IEEE Comput Graph Appl 30(5):61–71
Ayala D, Campos Miralles J, Ferré M, Grau S, Puig Puig A, Tost D (2005) Time-varying volume visualization. Tech. rep. http://hdl.handle.net/2117/9360
Bai Z, Tao Y, Lin H (2019) Featureflow: exploring feature evolution for time-varying volume data. J Vis 22(5):927–940
Bremer PT, Weber GH, Tierny J, Pascucci V, Day MS, Bell JB (2009) A topological framework for the interactive exploration of large scale turbulent combustion. In: 2009 Fifth IEEE international conference on e-science, pp 247–254
Bremer PT, Weber G, Pascucci V, Day M, Bell J (2010) Analyzing and tracking burning structures in lean premixed hydrogen flames. IEEE Trans Visual Comput Graph 16(2):248–260
Bremer PT, Weber G, Tierny J, Pascucci V, Day M, Bell J (2011) Interactive exploration and analysis of large-scale simulations using topology-based data segmentation. IEEE Trans Visual Comput Graph 17(9):1307–1324
Doraiswamy H, Natarajan V, Nanjundiah RS (2013) An exploration framework to identify and track movement of cloud systems. IEEE Trans Visual Comput Graph 19(12):2896–2905
Du ZD, Chiang YJ, Shen HW (2009) Out-of-core volume rendering for time-varying fields using a space-partitioning time (spt) tree. In: 2009 IEEE Pacific visualization symposium, pp 73–80
Dutta S, Shen HW (2016) Distribution driven extraction and tracking of features for time-varying data analysis. IEEE Trans Visual Comput Graph 22(1):837–846
Edelsbrunner H, Harer J, Mascarenhas A, Pascucci V, Snoeyink J (2008) Time-varying reeb graphs for continuous space-time data. Comput Geom 41(3):149–166
Frey S, Ertl T (2017) Flow-based temporal selection for interactive volume visualization. Comput Graph Forum 36(8):153–165
Gobbetti E, Iglesias Guitián JA, Marton F (2012) Covra: a compression-domain output-sensitive volume rendering architecture based on a sparse representation of voxel blocks. Comput Graph Forum 31(3pt4):1315–1324
Graphviz-graph visualization software. http://www.graphviz.org/. Accessed 23 Oct 2018
Gu Y, Wang C (2011) Transgraph: hierarchical exploration of transition relationships in time-varying volumetric data. IEEE Trans Visual Comput Graph 17(12):2015–2024
Gu Y, Wang C (2013) itree: exploring time-varying data using indexable tree. In: 2013 IEEE Pacific visualization symposium (PacificVis), pp 137–144. IEEE (2013)
Gu Y, Wang C, Peterka T, Jacob R, Kim SH (2016) Mining graphs for understanding time-varying volumetric data. IEEE Trans Visual Comput Graph 22(1):965–974
He X, Tao Y, Wang Q, Lin H (2019) Multivariate spatial data: a survey. J Vis 22(5):897–912
Jang Y, Ebert DS, Gaither K (2012) Time-varying data visualization using functional representations. IEEE Trans Visual Comput Graph 18(3):421–433
Johnson C (2004) Top scientific visualization research problems. IEEE Comput Graph Appl 24(4):13–17
Joshi A, Caban J, Rheingans P, Sparling L (2009) Case study on visualizing hurricanes using illustration-inspired techniques. IEEE Trans Visual Comput Graph 15(5):709–718
Ko CL, Liao HS, Wang TP, Fu KW, Lin CY, Chuang JH (2008) Multi-resolution volume rendering of large time-varying data using video-based compression. In: 2008 IEEE Pacific visualization symposium, pp 135–142
Krone M, Reina G, Schulz C, Kulschewski T, Pleiss J, Ertl T (2013) Interactive extraction and tracking of biomolecular surface features. Comput Graph Forum 32(3pt3):331–340
Kumpf A, Rautenhaus M, Riemer M, Westermann R (2019) Visual analysis of the temporal evolution of ensemble forecast sensitivities. IEEE Trans Visual Comput Graph 25(1):98–108
Laney D, Bremer PT, Mascarenhas A, Miller PL, Pascucci V (2006) Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities. IEEE Trans Visual Comput Graph 12(5):1053–1060
Lee TY, Shen HW (2009a) Visualization and exploration of temporal trend relationships in multivariate time-varying data. IEEE Trans Visual Comput Graph 15(6):1359–1366
Lee TY, Shen HW (2009) Visualizing time-varying features with tac-based distance fields. In: Proceedings of the 2009 IEEE Pacific visualization symposium, PACIFICVIS’09, pp. 1–8. IEEE Computer Society, Washington, DC
Ljung P, Krüger J, Groller E, Hadwiger M, Hansen CD, Ynnerman A (2016) State of the art in transfer functions for direct volume rendering. Comput Graph Forum 35(3):669–691
Lu A, Shen HW (2008) Interactive storyboard for overall time-varying data visualization. In: 2008 IEEE Pacific visualization symposium, pp 143–150
Lukasczyk J, Aldrich G, Steptoe M, Favelier G, Gueunet C, Tierny J, Maciejewski R, Hamann B, Leitte H (2017a) Viscous fingering: a topological visual analytic approach. Appl Mech Mater 869(8):9–19
Lukasczyk J, Weber GH, Maciejewski R, Garth C, Leitte H (2017b) Nested tracking graphs. Comput Graph Forum 36(3):12–22
Ma KL (2003) Visualizing time-varying volume data. Comput Sci Eng 5(2):34–42
Mascarenhas A, Snoeyink J (2009) Isocontour based visualization of time-varying scalar fields. Springer, Berlin, pp 41–68
Muelder C, Ma KL (2009) Interactive feature extraction and tracking by utilizing region coherency. In: 2009 IEEE Pacific visualization symposium, pp 17–24
Oesterling P, Heine C, Weber GH, Morozov D, Scheuermann G (2015) Computing and visualizing time-varying merge trees for high-dimensional data. In: Topological methods in data analysis and visualization IV. Springer, Cham, pp 87–101
Ozer S, Wei J, Silver D, Ma KL, Martin P (2012) Group dynamics in scientific visualization. In: IEEE symposium on large data analysis and visualization (LDAV), pp 97–104
Ozer S, Silver D, Bemis K, Martin P (2014) Activity detection in scientific visualization. IEEE Trans Vis Comput Graph 20(3):377–390
Ponchio F, Hormann K (2008) Interactive rendering of dynamic geometry. IEEE Trans Visual Comput Graph 14(4):914–925
Reh A, Amirkhanov A, Kastner J, Gröller E, Heinzl C (2015) Fuzzy feature tracking: Visual analysis of industrial 4d-xct data. In: Proceedings of the 31st spring conference on computer graphics, pp 131–131
Saikia H, Weinkauf T (2017) Global feature tracking and similarity estimation in time-dependent scalar fields. Comput Graph Forum 36(3):1–11
Samtaney R, Silver D, Zabusky N, Cao J (1994) Visualizing features and tracking their evolution. Computer 27(7):20–27
Sauer F, Yu H, Ma L (2014) Trajectory-based flow feature tracking in joint particle/volume datasets. IEEE Trans Visual Comput Graph 20(12):2565–2574
Shen HW, Chiang LJ, Ma KL (1999) A fast volume rendering algorithm for time-varying fields using a time-space partitioning (tsp) tree. In: Proceedings visualization’99 (Cat. No.99CB37067), pp 371–545
Silver D, Wang X (1997) Tracking and visualizing turbulent 3d features. IEEE Trans Visual Comput Graph 3(2):129–141
Takle J, Silver D, Heitmann K (2012) A case study: tracking and visualizing the evolution of dark matter halos and groups of satellite halos in cosmology simulations. In: 2012 IEEE conference on visual analytics science and technology (VAST), pp 243–244
Tikhonova A, Correa CD, Ma KL (2010) An exploratory technique for coherent visualization of time-varying volume data. Comput Graph Forum 29(3):783–792
Tong X, Lee TY, Shen HW (2012) Salient time steps selection from large scale time-varying data sets with dynamic time warping. In: IEEE symposium on large data analysis and visualization (LDAV), pp 49–56
Valsangkar AA, Monteiro JM, Narayanan V, Hotz I, Natarajan V (2019) An exploratory framework for cyclone identification and tracking. IEEE Trans Visual Comput Graph 25(3):1460–1473
Wang C, Yu H, Ma KL (2008) Importance-driven time-varying data visualization. IEEE Trans Visual Comput Graph 14(6):1547–1554
Wang C, Yu H, Ma KL (2010) Application-driven compression for visualizing large-scale time-varying data. IEEE Comput Graph Appl 30(1):59–69
Wang Y, Chen W, Zhang J, Dong T, Shan G, Chi X (2011) Efficient volume exploration using the gaussian mixture model. IEEE Trans Visual Comput Graph 17(11):1560–1573
Wang Y, Yu H, Ma KL (2013) Scalable parallel feature extraction and tracking for large time-varying 3D volume data. In: Proceedings of the 13th eurographics symposium on parallel graphics and visualization, EGPGV’13. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, pp 17–24
Wang KC, Wei TH, Shareef N, Shen HW (2019) Ray-based exploration of large time-varying volume data using per-ray proxy distributions. IEEE Trans Vis Comput Graph, p 1
Weber G, Bremer PT, Day M, Bell J, Pascucci V (2011) Feature tracking using reeb graphs. Springer, Berlin, pp 241–253
Weiss K, De Floriani L (2008) Modeling and visualization approaches for time-varying volumetric data. In: Bebis G, Boyle R, Parvin B, Koracin D, Remagnino P, Porikli F, Peters J, Klosowski J, Arns L, Chun YK, Rhyne TM, Monroe L (eds) Advances in visual computing. Springer, Berlin, pp 1000–1010
Widanagamaachchi W, Christensen C, Bremer PT, Pascucci V (2012) Interactive exploration of large-scale time-varying data using dynamic tracking graphs. In: IEEE symposium on large data analysis and visualization (LDAV). IEEE, pp 9–17
Widanagamaachchi W, Chen J, Klacansky P, Pascucci V, Kolla H, Bhagatwala A, Bremer PT (2015) Tracking features in embedded surfaces: Understanding extinction in turbulent combustion. In: IEEE symposium on large data analysis and visualization (LDAV). IEEE, pp 9–16
Widanagamaachchi W, Hammond K, Lo LT, Wirth B, Samsel F, Sewell C, Ahrens J, Pascucci V (2015) Visualization and analysis of large-scale atomistic simulations of plasma-surface interactions. In: Eurographics conference on visualization (EuroVis)—short papers. The Eurographics Association
Widanagamaachchi W, Jacques A, Wang B, Crosman E, Bremer PT, Pascucci V, Horel J (2017) Exploring the evolution of pressure-perturbations to understand atmospheric phenomena. In: IEEE Pacific visualization symposium (PacificVis), pp 101–110
Wong PC, Shen HW, Johnson CR, Chen C, Ross RB (2012) The top 10 challenges in extreme-scale visual analytics. IEEE Comput Graph Appl 32(4):63–67
Woodring J, Shen HW (2009a) Multiscale time activity data exploration via temporal clustering visualization spreadsheet. IEEE Trans Visual Comput Graph 15(1):123–137
Woodring J, Shen HW (2009b) Semi-automatic time-series transfer functions via temporal clustering and sequencing. Comput Graph Forum 28(3):791–798
Yu L, Lu A, Ribarsky W, Chen W (2010) Automatic animation for time-varying data visualization. Comput Graph Forum 29(7):2271–2280
Yu L, Lu A, Chen W (2013) Visualization and analysis of 3D time-varying simulations with time lines. J Vis Lang Comput 24(5):402–418
Zhou B, Chiang YJ (2018) Key time steps selection for large-scale time-varying volume datasets using an information-theoretic storyboard. Comput Graph Forum 37(3):37–49
Acknowledgements
The authors would like to thank the anonymous reviewers for their valuable comments. This work was supported by the National Key Research & Development Program of China (2017YFB0202203), National Natural Science Foundation of China (61672452, 61890954, and 61972343), and NSFC-Guangdong Joint Fund (U1611263).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bai, Z., Tao, Y. & Lin, H. Time-varying volume visualization: a survey. J Vis 23, 745–761 (2020). https://doi.org/10.1007/s12650-020-00654-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12650-020-00654-x