[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Effects of iron sources on the growth and lipid/carbohydrate production of marine microalga Dunaliella tertiolecta

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The effects of iron sources with different speciation and anionic moieties (ferric chloride, ferrous chloride, ferric EDTA, ferrous EDTA, ferric ammonium sulfate, and ferrous ammonium sulfate) on the cell growth and the production of energy storage (lipid and carbohydrate) from Dunaliella tertiolecta were investigated. The influence of iron dosage was also compared in the range from 0.65 mg/L (1X) to 6.5 mg/L (10X) as Fe concentration. Best cell growth rate was achieved when ferrous ammonium sulfate was used. Ferric EDTA resulted in higher lipid content than other iron sources, while ferrous ammonium sulfate favored the accumulation of carbohydrate among six iron sources. The accumulations of lipid and carbohydrate as energy storage competed each other and thus both contents did not increase together. In the presence of ferric EDTA, lipid content is increasing, while carbohydrate content is decreasing. On the contrary, lipid content is decreasing while carbohydrate is increasing in the presence of ferric ammonium sulfate. Because the overall carbohydrate content was larger than that of lipid, bioethanol production would be more advantageous than biodiesel production with the present D. tertiolecta strain if the carbohydrate in D. tertiolecta contains a high fraction of glucose with a good saccharification yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, B., Y. Li, N. Wu, and C. Q. Lan (2008) CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 79: 707–718.

    Article  CAS  Google Scholar 

  2. O. K. Lee, D. H. Sung, C. G. Lee, and E. Y. Lee (2015) Sustainable production of liquid biofuels from renewable microalgae biomass. J. Ind. Eng. Chem. 29: 24–31.

    Article  CAS  Google Scholar 

  3. Kwon, M. H. and S. H. Yeom (2015) Optimization of one-step extraction and transesterification process for biodiesel production from the marine microalga Nannochloropsis sp. KMMCC 290 cultivated in a raceway pond. Bioetchnol. Bioproc. Eng. 20: 276–283.

    Article  CAS  Google Scholar 

  4. Kim, J. and J.-Y. Lee (2016) Enhanced autotrophic growth of Nannochloris sp. with trona buffer for sustainable carbon recycle. Bioetchnol. Bioproc. Eng. 10: 422–429.

    Google Scholar 

  5. Siaut, M., S. Cuiné, C. Cagnon, B. Fessler, M. Nguyen, P. Carrier, A. Beyly, F. Beisson, C. Triantaphylidès, Y. Li-Beisson, and G. Peltier (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: Characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol. 11: 7.

    Article  CAS  Google Scholar 

  6. Kim, G., G. Mujtaba, M. Rizwan, and K. Lee (2014) Environmental stress strategies for stimulating lipid production from microlagae for biodiesel. Appl. Chem. Eng. 25: 553–558.

    Article  CAS  Google Scholar 

  7. Mujtaba, G., W. Choi, C. G. Lee, and K. Lee (2012) Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Bioresour. Technol. 123: 279–283.

    Article  CAS  Google Scholar 

  8. Kim, G., C. H. Lee, and K. Lee (2016) Enhancement of lipid production in marine microalga Tetraselmis sp. through salinity variation. Kor. J. Chem. Eng. 33: 230–237.

    Article  CAS  Google Scholar 

  9. Liu, Z. Y., G. C. Wang, and B. C. Zhou (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour. Technol. 99: 4717–4722.

    Article  CAS  Google Scholar 

  10. Kim, G., J. Bae, and K. Lee (2016) Nitrate repletion strategy for enhancing lipid production from marine microalga Tetraselmis sp. Bioresour. Technol. 205: 274–279.

    Article  CAS  Google Scholar 

  11. Naito, K., M. Matsui, and I. Imai (2005) Ability of marine eukaryotic red tide microalgae to utilize insoluble iron. Harmful Algae 4: 1021–1032.

    Article  CAS  Google Scholar 

  12. Chiu, S. Y., C. Y. Kao, M. T. Tsai, S. C. Ong, C, H, Chen, and C. S. Lin (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour. Technol. 100: 833–838.

    Article  CAS  Google Scholar 

  13. Li, Y., Y. F. Chen, P. Chen, M. Min, W. Zhou, B. Martinez, J. Zhu, and R. Ruan (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour. Technol. 102: 5138–5144.

    CAS  Google Scholar 

  14. Oijen, T. V., M. Van Leeuwe, W. W. C. Gieskes, and H. J. W. De Baar (2004) Effects of iron limitation on photosynthesis and carbohydrate metabolism in the Antarctic diatom Chaetoceros brevis (Bacillariophyceae). Eur. J. Phycol. 39: 161–171.

    Article  Google Scholar 

  15. Yeesang, C. and B. Cheirsilp (2011) Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresour. Technol. 102: 3034–3040.

    Article  CAS  Google Scholar 

  16. Mata, T. M., R. Almeida, and N. S. Caetano (2013) Effect of the culture nutrients on the biomass and lipid productivities of microalgae Dunaliella tertiolecta. Chem. Eng. Trans. 32: 973–978.

    Google Scholar 

  17. Lee, O. K., A. L. Kim, D. H. Seong, C. G. Lee, Y. T. Jung, J. W. Lee, and E. Y. Lee (2013) Chemoenzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta. Bioresour. Technol. 132: 197–201.

    Article  CAS  Google Scholar 

  18. Guillard, R. R. L (1975) Culture of phytoplankton for feeding marine invertebrates. pp. 26-60. In Smith, W. L. and M. H. Chanley (eds.) Culture of Marine Invertebrate Animals. Plenum Press, NY, USA.

    Google Scholar 

  19. Dubois, M., K. A. Gilles, J. K. Hamilton, P. Reberts, and F. Smith (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.

    Article  CAS  Google Scholar 

  20. Van Wychen, S., K. Ramirez, and L. M. Laurens (2013) Determination of total lipids as fatty acid methyl esters (FAME) by in situ transesterification. Laboratory Analytical Procedure. p. 12. National Renewable Energy Laboratory, Golden, CO, USA.

    Book  Google Scholar 

  21. Terauchi, A. M., G. Peers, M. C. Kobayashi, K. K. Niyogi, and S. S. Merchant (2010) Trophic status of Chlamydomonas reinhardtii influences the impact of iron deficiency on photosynthesis. Photosyn. Res. 105: 39–49.

    Article  CAS  Google Scholar 

  22. Concas, A., A. Steriti, M. Pisu, and G. Cao (2014) Comprehensive modeling and investigation of the effect of iron on the growth rate and lipid accumulation of Chlorella vulgaris cultured in batch photobioreactors. Bioresour. Technol. 153: 340–350.

    Article  CAS  Google Scholar 

  23. Ren, H. Y., B. F. Liu, F. Kong, L. Zhao, G. J. Xie, and N. Q. Ren (2014) Enhanced lipid accumulation of green microalga Scenedesmus sp. by metal ions and EDTA addition. Bioresour. Technol. 169: 763–767.

    Article  CAS  Google Scholar 

  24. Sun, X., Y. Cao, H. Xu, Y. Liu, J. Sun, D. Qiao, and Y. Cao (2014) Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresour. Technol. 155: 204–212.

    Article  CAS  Google Scholar 

  25. Baky, H. H. A. E., G. S. El-Baroty, A. Bouaid, M. Martinez, and J. Aracil (2012) Enhancement of lipid accumulation in Scenedesmus obliquus by optimizing CO2 and Fe3+ levels for biodiesel production. Bioresour. Technol. 119: 429–432.

    Article  Google Scholar 

  26. Ruangsomboon, S., M. Ganmanee, and S. Choochote (2013) Effects of different nitrogen, phosphorus, and iron concentrations and salinity on lipid production in newly isolated strain of the tropical green microalga, Scenedesmus dimorphus KMITL. J. Appl. Phycol. 25: 867–874.

    Article  CAS  Google Scholar 

  27. Sakthivel, R., S. Elumalai, and M. M. Arif (2011) Microalgae lipid research, past, present: A critical review for biodiesel production, in the future. J. Exp. Sci. 2: 29–49.

    Google Scholar 

  28. Singh, B., A. Guldhe, I. Rawat, and F. Bux (2014) Towards a sustainable approach for development of biodiesel from plant and microalgae. Renew. Sustain. Energy Rev. 29: 216–245.

    Article  CAS  Google Scholar 

  29. Kim, G., G. Mujtaba, and K. Lee (2016) Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production. Algae 31: 257–266.

    Google Scholar 

  30. Radakovits, R., R. E. Jinkerson, A. Darzins, and M. C. Posewitz (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell 9: 486–501.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kisay Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizwan, M., Mujtaba, G. & Lee, K. Effects of iron sources on the growth and lipid/carbohydrate production of marine microalga Dunaliella tertiolecta . Biotechnol Bioproc E 22, 68–75 (2017). https://doi.org/10.1007/s12257-016-0628-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0628-0

Keywords

Navigation