[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Oxidative Damages to Eye Stem Cells, in Response to, Bright and Ultraviolet Light, Their Associated Mechanisms, and Salvage Pathways

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The surface of the eye is continuously exposed to the harshness of the external environment. As a homeostatic mechanism for replenishing the worn off cells of the ocular surface, a balance is maintained via the role of ocular stem cells. However, under extreme conditions of harshness like exposure to bright and ultraviolet light, the ocular stem cells are unable to do the repair mechanisms resulting in severe impairment of vision and disturbances in the eye. This work reappraises the recent understandings of mechanisms of oxidative damages caused to the ocular stem cells by UV/bright light and their probable mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Daniels, J. T., Dart, J. K., Tuft, S. J., & Khaw, P. T. (2001). Corneal stem cells in review. Wound Repair and Regeneration, 9, 483–494.

    Article  CAS  PubMed  Google Scholar 

  2. Xuan, M., Wang, S., Liu, X., He, Y., Li, Y., & Zhang, Y. (2016). Proteins of the corneal stroma: Importance in visual function. Cell and Tissue Research, 364, 9–16.

    Article  CAS  PubMed  Google Scholar 

  3. Lavker, R. M., & Sun, T. T. (2003). Epithelial stem cells: The eye provides a vision. Eye, 17, 937–942.

    Article  CAS  PubMed  Google Scholar 

  4. Du, Y., Funderburgh, M., Mann, M. N., SunderRaj, N., & Funderburgh, J. L. (2005). Multipotent stem cells in human corneal stroma. Stem Cells, 23, 1266–1275.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tropepe, V., Coles, B. L., Chiasson, B. J., Horsford, D. J., Elia, A. J., Mclnnes, R. R., et al. (2000). Retinal stem cells in the adult mammalian eye. Science, 287, 2032–2036.

    Article  CAS  PubMed  Google Scholar 

  6. Dziasko, M. A., & Daniels, J. T. (2016). Anatomical features and cell-cell interactions in the human limbal epithelial stem cell niche. The Ocular Surface, 14, 322–330.

    Article  PubMed  Google Scholar 

  7. Notara, M., Alatza, A., Gilfillan, J., Harris, A. R., Levis, H. J., Schrader, S., et al. (2010). In sickness and in health: Corneal epithelial stem cell biology, pathology and therapy. Experimental Eye Research, 90, 188–195.

    Article  CAS  PubMed  Google Scholar 

  8. Dua, H. S., Shanmuganathan, V. A., Powell-Richards, A. O., Tighe, P. J., & Joseph, A. (2005). Limbal epithelial crypts: A novel anatomical structure and a putative limbal stem cell niche. British Journal of Ophthalmology, 89, 529–532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shortt, A. J., Secker, G. A., Munro, P. M., Khaw, P. T., Tuft, S. J., & Daniels, J. T. (2007). Characterization of the limbal epithelial stem cell niche: Novel imaging techniques permit in vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells, 25, 1402–1409.

    Article  PubMed  Google Scholar 

  10. Du, Y., Carlson, E. C., Funderburgh, M. L., Birk, D. E., Pearlman, E., Guo, N., et al. (2009). Stem cell therapy restores transparency to defective murine corneas. Stem Cells, 27, 1635–1642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dayem, A. A., Choi, H. Y., Kim, J. H., & Cho, S. G. (2010). Role of oxidative stress in stem, cancer, and cancer stem cells. Cancers, 2, 859–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wakamatsu, T. H., Dogru, M., & Tsubota, K. (2008). Tearful relations: Oxidative stress, inflammation and eye diseases. Arquivos brasileiros de oftalmologia, 71, 72–79.

    Article  PubMed  Google Scholar 

  13. Barker, F., & Brainard, G. (1991). The direct spectral transmittance of excised human lens as a function of age. US Food and Drug Administration Report.

  14. Boettner, E. A., & Walter, J. R. (1962). Transmission of ocular media. Investigative Ophthalmology & Visual Science, 1, 777–783.

    Google Scholar 

  15. Semba, R. D., Margolick, J. B., Leng, S., Walston, J., Ricks, M. O., & Fried, L. P. (2005). T cell subsets and mortality in older community-dwelling women. Experimental Gerontology, 40, 81–87.

    Article  CAS  PubMed  Google Scholar 

  16. Ito, K., Hirao, A., Arai, F., Takubo, K., Matsuoka, S., Miyamoto, K., et al. (2006). Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nature Medicine, 12, 446–451.

    Article  CAS  PubMed  Google Scholar 

  17. Liedtke, S., Biebernick, S., Radke, T. F., Stapelkamp, D., Coenen, C., Zaehres, H., et al. (2015). DNA damage response in neonatal and adult stromal cells compared with induced pluripotent stem cells. Stem Cells Translational Medicine, 4, 576–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peng, C. H., Chang, Y. L., Kao, C. L., Tseng, L. M., Wu, C. C., Chen, Y. C., et al. (2010). SirT1—a sensor for monitoring self-renewal and aging process in retinal stem cells. Sensors, 10, 6172–6194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gaillard, E. R., Atherton, S. J., Eldred, G., & Dillon, J. (1995). Photophysical studies on human retinal lipofuscin. Photochemistry and Photobiology, 61, 448–453.

    Article  CAS  PubMed  Google Scholar 

  20. Rozanowska, M., Jarvis-Evans, J., Korytowski, W., Boulton, M. E., Burke, J. M., & Sarna, T. (1995). Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species. Journal of Biological Chemistry, 270, 18825–18830.

    Article  CAS  PubMed  Google Scholar 

  21. Akeo, K., Hiramitsu, T., Kanda, T., Yorifuji, H., & Okisaka, S. (1996). Comparative effects of linoleic acid and linoleic acid hydroperoxide on growth and morphology of bovine retinal pigment epithelial cells in vitro. Current Eye Research, 15, 467–476.

    Article  CAS  PubMed  Google Scholar 

  22. Ueda, T., & Armstrong, D. (1996). Preventive effect of natural and synthetic antioxidants on lipid peroxidation in the mammalian eye. Ophthalmic Research, 28, 184–192.

    Article  CAS  PubMed  Google Scholar 

  23. Spector, A., Kleiman, N. J., Huang, R. C., & Wang, R. (1989). Repair of H2O2 induced DNA damage in bovine lens epithelial cell cultures. Experimental Eye Research, 49, 689–698.

    Article  Google Scholar 

  24. Kleiman, N. J., Wang, R. R., & Spector, A. (1990). Ultraviolet light induced DNA damage and repair in bovine lens epithelial cells. Current Eye Research, 9, 1185–1193.

    Article  CAS  PubMed  Google Scholar 

  25. Nagai, N., & Ito, Y. (2014). Excessive hydrogen peroxide enhances the attachment of amyloid β1-42 in the lens epithelium of UPL rats, a hereditary model for cataracts. Toxicology, 315, 55–64.

    Article  CAS  PubMed  Google Scholar 

  26. Berthoud, V. M., & Beyer, E. C. (2009). Oxidative stress, lens gap junctions, and cataracts. Antioxidants & Redox Signaling, 11, 339–353.

    Article  CAS  Google Scholar 

  27. Rogers, C. S., Chan, L. M., Sims, Y. S., Byrd, K. D., Hinton, D. L., & Twining, S. S. (2004). The effects of sub-solar levels of UV-A and UV-B on rabbit corneal and lens epithelial cells. Experimental Eye Research, 78, 1007–1014.

    Article  CAS  PubMed  Google Scholar 

  28. Romero-Jiménez, M., Santodomingo-Rubido, J., & Wolffsohn, J. S. (2010). Keratoconus: A review. Contact Lens and Anterior Eye, 33, 157–166.

    Article  PubMed  Google Scholar 

  29. Kenney, M. C., Chwa, M., Atilano, S. R., Tran, A., Carballo, M., Saghizadeh, M., et al. (2005). Increased levels of catalase and cathepsin V/L2 but decreased TIMP-1 in keratoconus corneas: Evidence that oxidative stress plays a role in this disorder. Investigative Ophthalmology & Visual Science, 46, 823–832.

    Article  Google Scholar 

  30. Arnal, E., Peris-Martínez, C., Menezo, J. L., Johnsen-Soriano, S., & Romero, F. J. (2011). Oxidative stress in keratoconus? Investigative Ophthalmology & Visual Science, 52, 8592–8597.

    Article  CAS  Google Scholar 

  31. Eghrari, A. O., & Gottsch, J. D. (2010). Fuchs’ corneal dystrophy. Expert Review of Ophthalmology, 5, 147–159.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jurkunas, U. V., Bitar, M. S., Funaki, T., & Azizi, B. (2010). Evidence of oxidative stress in the pathogenesis of fuchs endothelial corneal dystrophy. American Journal of Pathology, 177, 2278–2289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Buddi, R., Lin, B., Atilano, S. R., Zorapapel, N. C., Kenney, M. C., & Brown, D. J. (2002). Evidence of oxidative stress in human corneal diseases. Journal of Histochemistry & Cytochemistry, 50, 341–351.

    Article  CAS  Google Scholar 

  34. Wilson, S. E., & Bourne, W. M. (1988). Fuchs’ dystrophy. Cornea, 7, 2–18.

    Article  CAS  PubMed  Google Scholar 

  35. Gottsch, J. D., Bowers, A. L., Margulies, E. H., Seitzman, G. D., Kim, S. W., Saha, S., et al. (2003). Serial analysis of gene expression in the corneal endothelium of Fuchs’ dystrophy. Investigative Ophthalmology & Visual Science, 44, 594–599.

    Article  Google Scholar 

  36. Jurkunas, U. V., Rawe, I., Bitar, M. S., Zhu, C., Harris, D. L., Colby, K., et al. (2008). Decreased expression of peroxiredoxins in Fuchs’ endothelial dystrophy. Investigative Ophthalmology & Visual Science, 49, 2956–2963.

    Article  Google Scholar 

  37. Andres-Mateos, E., Perier, C., Zhang, L., Blanchard-Fillion, B., Greco, T. M., Thomas, B., et al. (2007). DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proceedings of the National Academy of Sciences, 104, 14807–14812.

    Article  CAS  Google Scholar 

  38. Liu, C., Chen, Y., Kochevar, I. E., & Jurkunas, U. V. (2014). Decreased DJ-1 leads to impaired Nrf2-regulated antioxidant defence and increased UV-A-induced apoptosis in corneal endothelial cells DJ-1 deficiency increases oxidative damage in CECs. Investigative Ophthalmology & Visual Science, 55, 5551–5560.

    Article  CAS  Google Scholar 

  39. Czarny, P., Kasprzak, E., Wielgorski, M., Udziela, M., Markiewicz, B., Blasiak, J., et al. (2013). DNA damage and repair in Fuchs endothelial corneal dystrophy. Molecular Biology Reports, 40, 2977–2983.

    Article  CAS  PubMed  Google Scholar 

  40. Higa, K., Shimmura, S., Miyashita, H., Shimazaki, J., & Tsubota, K. (2005). Melanocytes in the corneal limbus interact with K19-positive basal epithelial cells. Experimental Eye Research, 81, 218–223.

    Article  CAS  PubMed  Google Scholar 

  41. Prota, G. (1997). Pigment cell research: What directions? Pigment Cell Research, 10, 5–11.

    Article  CAS  PubMed  Google Scholar 

  42. Shimmura, S., & Tsubota, K. (1997). Ultraviolet B-induced mitochondrial dysfunction is associated with decreased cell detachment of corneal epithelial cells in vitro. Investigative Ophthalmology & Visual Science, 38, 620–626.

    CAS  Google Scholar 

  43. Liang, F. Q., & Godley, B. F. (2003). Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: A possible mechanism for RPE aging and age-related macular degeneration. Experimental Eye Research, 76, 397–403.

    Article  CAS  PubMed  Google Scholar 

  44. Jin, G. F., Hurst, J. S., & Godley, B. F. (2001). Hydrogen peroxide stimulates apoptosis in cultured human retinal pigment epithelial cells. Current Eye Research, 22, 165–173.

    Article  CAS  PubMed  Google Scholar 

  45. Godley, B., Shamsi, F., Jin, G. F., Hurst, J. S., Zheng, B., & Boulton, M. (2001). Effect of lipofuscin and light exposure in cultured human retinal pigment epithelial cells. Investigative Ophthalmology & Visual Science, 42, S943.

    Google Scholar 

  46. Levin, L. A., Clark, J. A., & Johns, L. K. (1996). Effect of lipid peroxidation inhibition on retinal ganglion cell death. Investigative Ophthalmology & Visual Science, 37, 2744–2749.

    CAS  Google Scholar 

  47. McKinnon, S. J., Lehman, D. M., Kerrigan-Baumrind, L. A., Merges, C. A., Pease, M. E., Kerrigan, D. F., et al. (2002). Caspase activation and amyloid precursor protein cleavage in rat ocular hypertension. Investigative Ophthalmology & Visual Science, 43, 1077–1087.

    Google Scholar 

  48. Miyashita, T., & Reed, J. C. (1995). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell, 80, 293–299.

    Article  CAS  PubMed  Google Scholar 

  49. Hockenbery, D. M. (1992). The bcl-2 oncogene and apoptosis. Seminars in Immunology, 4, 413–420.

    CAS  PubMed  Google Scholar 

  50. Miyashita, T., Harigai, M., Hanada, M., & Reed, J. C. (1994). Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Research, 54, 3131–3135.

    CAS  PubMed  Google Scholar 

  51. Riley, M. V. (1998). Response to the corneal endothelium to oxidative stress. In H. D. Cavamagh (Ed.), The cornea: Transactions of the World Congress on the Cornea III (pp. 211–216). New York: Raven Press.

    Google Scholar 

  52. Rosette, C., & Karin, M. (1996). Ultraviolet light and osmotic stress: Activation of the JNK cascade through multiple growth factor and cytokine receptors. Science, 274, 1194–1197.

    Article  CAS  PubMed  Google Scholar 

  53. Galcheva-Gargova, Z., Derijard, B., Wu, I. H., & Davis, R. J. (1994). An osmo sensing signal transduction pathway in mammalian cells. Science, 265, 806–808.

    Article  CAS  PubMed  Google Scholar 

  54. Kallunki, T., Su, B., Tsigelny, I., Sluss, H. K., Dérijard, B., Moore, G., et al. (1994) JNK2 contains a specificity determining region responsible for efficient c-Jun binding and phosphorylation. Genes & Development, 8, 2996–3007.

    Article  CAS  Google Scholar 

  55. Minden, A., Lin, A., Claret, F. X., Abo, A., & Karin, M. (1995). Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell, 81, 1147–1157.

    Article  CAS  PubMed  Google Scholar 

  56. Wang, L., Xu, D., Dai, W., & Lu, L. (1999). An ultraviolet-activated K+ channel mediates apoptosis of myeloblastic leukemia cells. Journal of Biological Chemistry, 274, 3678–3685.

    Article  CAS  PubMed  Google Scholar 

  57. Engelberg, D., Klein, C., Martinetto, H., Struhl, K., & Karin, M. (1994). The UV response involving the Ras signaling pathway and AP-1 transcription factors is conserved between yeast and mammals. Cell, 77, 381–390.

    Article  CAS  PubMed  Google Scholar 

  58. Kitagawa, D., Tanemura, S., Ohata, S., Shimizu, N., Seo, J., Nishitai, G., et al. (2002). Activation of extracellular signal-regulated kinase by ultraviolet is mediated through src-dependent epidermal growth factor receptor phosphorylation its implication in an anti-apoptotic function. Journal of Biological Chemistry, 277, 366–371.

    Article  CAS  PubMed  Google Scholar 

  59. Derijard, B., Hibi, M., Wu, I. H., Barrett, T., Su, B., Deng, T., et al. (1994). JNK1: A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell, 76, 1025–1037.

    Article  CAS  PubMed  Google Scholar 

  60. Devary, Y., Gottlieb, R. A., Smeal, T., & Karin, M. (1992). The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases. Cell, 71, 1081–1091.

    Article  CAS  PubMed  Google Scholar 

  61. Hibi, M., Lin, A., Smeal, T., Minden, A., & Karin, M. (1993). Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes & Development, 7, 2135–2148.

    Article  CAS  Google Scholar 

  62. Buscher, M., Rahmsdorf, H. J., Litfin, M., Karin, M., & Herrlich, P. (1998). Activation of the c-fos gene by UV and phorbol ester: Different signal transduction pathways converge to the same enhancer element. Oncogene, 3, 301–311.

    Google Scholar 

  63. Devary, Y., Gottlieb, R. A., Lau, L. F., & Karin, M. (1991). Rapid and preferential activation of the c-jun gene during the mammalian UV response. Molecular and Cellular Biology, 11, 2804–2811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Herrlich, P., Ponta, H., & Rahmsdorf, H. J. (1992). DNA damage-induced gene expression: Signal transduction and relation to growth factor signalling (review). Reviews of Physiology, Biochemistry and Pharmacology, 119, 187–223.

    Article  CAS  PubMed  Google Scholar 

  65. Boileau, T. W. M., Bray, T. M., & Bomser, J. A. (2003). Ultraviolet radiation modulates nuclear factor kappa B activation in human lens epithelial cells. Journal of Biochemical and Molecular Toxicology, 17, 108–113.

    Article  CAS  PubMed  Google Scholar 

  66. Zhuge, C. C., Xu, J. Y., Zhang, J., Li, W., Li, P., & Li, Z. (2014). Fullerenol protects retinal pigment epithelial cells from oxidative stress–induced premature senescence via activating SIRT1. Investigative Ophthalmology & Visual Science, 55, 4628–4638.

    Article  Google Scholar 

  67. Liu, J., Mao, W., Ding, B., & Liang, C. S. (2008). ERKs/p53 signal transduction pathway is involved in doxorubicin–induced apoptosis in H9c2 cells and cardiomyocytes. American Journal of Physiology-Heart and Circulatory Physiology, 295, H1956–H1965.

    Google Scholar 

  68. She, Q. B., Chen, N., & Dong, Z. (2000). ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. Journal of Biological Chemistry, 275, 20444–20449.

    Article  CAS  PubMed  Google Scholar 

  69. Azizi, B., Ziaei, A., Fuchsluger, T., Schmedt, T., Chen, Y., & Jurkunas, U. V. (2011). p53-regulated increase in oxidative-stress–induced apoptosis in Fuchs endothelial corneal dystrophy: A native tissue model. Investigative Ophthalmology & Visual Science, 52, 9291–9297.

    Article  CAS  Google Scholar 

  70. Ghosh, S., May, M. J., & Kopp, E. B. (1998). NF-kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses. Annual Review of Immunology, 16, 225–260.

    Article  CAS  PubMed  Google Scholar 

  71. Kang, S. M., Tran, A. C., Grilli, M., & Lenardo, M. J. (1992). NF-kappa B subunit regulation in nontransformed CD4 + T lymphocytes. Science, 256, 1452–1456.

    Article  CAS  PubMed  Google Scholar 

  72. Dent, P., Yacoub, A., Fisher, P. B., Hagan, M. P., & Grant, S. (2003). MAPK pathways in radiation responses. Oncogene, 22, 5885–5896.

    Article  CAS  PubMed  Google Scholar 

  73. Zwang, Y., & Yarden, Y. (2006). p38 MAP kinase mediates stress-induced internalization of EGFR: Implications for cancer chemotherapy. EMBO Journal, 25, 4195–4206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li, T., Dai, W., & Lu, L. (2002). Ultraviolet-induced junD activation and apoptosis in myeloblastic leukemia ML-1 cells. Journal of Biological Chemistry, 277, 32668–32676.

    Article  CAS  PubMed  Google Scholar 

  75. Bode, A. M., & Dong, Z. (2003). Mitogen-activated protein kinase activation in UV-induced signal transduction. Science Signaling, 28, RE2.

    Article  Google Scholar 

  76. Roduit, R., & Schorderet, D. F. (2008). MAP kinase pathways in UV-induced apoptosis of retinal pigment epithelium ARPE19 cells. Apoptosis, 13, 343–353.

    Article  CAS  PubMed  Google Scholar 

  77. Ho, T. C., Yang, Y. C., Cheng, H. C., Wu, A. C., Chen, S. L., Chen, H. K., et al. (2006). Activation of mitogen-activated protein kinases is essential for hydrogen peroxide -induced apoptosis in retinal pigment epithelial cells. Apoptosis, 11, 1899–1908.

    Article  CAS  PubMed  Google Scholar 

  78. Cao, G., Chen, M., Song, Q., Liu, Y., Xie, L., Han, Y., et al. (2012). EGCG protects against UVB-induced apoptosis via oxidative stress and the JNK1/c-Jun pathway in ARPE19 cells. Molecular Medicine Reports, 5, 54–59.

    CAS  PubMed  Google Scholar 

  79. Lowry, N. A., & Temple, S. (2007). Making human neurons from stem cells after spinal cord injury. PLoS Medicine, 4, 236–238.

    Article  CAS  Google Scholar 

  80. Ramachandran, A. C., Bartlett, L. E., & Mendez, I. M. (2002). A multiple target neural transplantation strategy for Parkinson’s disease. Reviews in the Neurosciences, 13, 243–256.

    Article  PubMed  Google Scholar 

  81. Slavin, S., Kurkalli, B. G., & Karussis, D. (2008). The potential use of adult stem cells for the treatment of multiple sclerosis and other neurodegenerative disorders. Clinical Neurology and Neurosurgery, 110, 943–946.

    Article  PubMed  Google Scholar 

  82. Nasser, W., Amitai-Lange, A., Soteriou, D., Hanna, R., Tiosano, B., Fuchs, Y., et al. (2018). Corneal-committed cells restore the stem cell pool and tissue boundary following injury. Cell Reports, 22, 323–331.

    Article  CAS  PubMed  Google Scholar 

  83. Enzmann, V., Yolcu, E., Kaplan, H. J., & Ildstad, S. T. (2009). Stem cells as tools in regenerative therapy for retinal degeneration. Archives of Ophthalmology, 127, 563–571.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chang, H. M., Hung, K. H., Hsu, C. C., Lin, T. C., & Chen, S. Y.(2015). Using induced pluripotent stem cell-derived conditional medium to attenuate the light induced photo damaged retina of rats. Journal of the Chinese Medical Association, 78, 169–176.

    Article  PubMed  Google Scholar 

  85. Zhou, L., Wang, W., Liu, Y., Fernandez de Castro, J., Ezashi, T., et al. (2011). Differentiation of induced pluripotent stem cells of swine into rod photoreceptors and their integration into the retina. Stem Cells, 29, 972–980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Assawachananont, J., Mandai, M., Okamoto, S., Yamada, C., Eiraku, M., Yonemura, S., et al. (2014). Transplantation of embryonic and induced pluripotent stem cellderived 3D retinal sheets into retinal degenerative mice. Stem Cell Reports, 2, 662–674.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Tucker, B. A., Park, I. H., Qi, S. D., Klassen, H. J., Jiang, C., Yao, J., et al. (2011). Transplantation of adult mouse iPS cellderived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS ONE, 6, e18992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kamao, H., Mandai, M., Okamoto, S., Sakai, N., Suga, A., Sugita, S., et al. (2014). Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports, 2, 205–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Garita-Hernandez, M., Diaz-Corrales, F., Lukovic, D., Guede, I. G., Lloret, A. D., Sanchez, M. L., et al. (2013). Hypoxia increases the yield of photoreceptors differentiating from mouse embryonic stem cells and improves the modelling of retinogenesis in vitro. Stem Cells, 31, 966–978.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Utsav Sen Ph.D. student in Yenepoya research centre, Yenepoya University for his help in art work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bipasha Bose or Sudheer Shenoy P.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, B., Najwa, A. & Shenoy P, S. Oxidative Damages to Eye Stem Cells, in Response to, Bright and Ultraviolet Light, Their Associated Mechanisms, and Salvage Pathways. Mol Biotechnol 61, 145–152 (2019). https://doi.org/10.1007/s12033-018-0136-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-0136-x

Keywords