Abstract
Disassembly is a main phase of maintenance, remanufacturing and the end of life. It is always accomplished by human or robot. Manual disassembly has low effectiveness and high work cost whereas robotic disassembly is not sufficiently flexible to operate difficult operations. The use of robots in handling and assembling of parts becomes a necessity. Disassembly operations by simultaneously human and robot can enhance the productivity and reduce the product cost. This paper presents an interactive disassembly planning (DP) approach with human and robot collaboration (HRC). The proposed approach generates optimal DP strategies with human and robots tasks allocations. Moreover, based on an industrial manufacturing database and a set of relationship matrices, the proposed approach estimates the total disassembly time of the generated DP with respect of the minimum change of dismantling directions and tools. To highlight the added value of the proposed approach, an industrial case study, chosen from the literature, is treated. To demonstrate the reduction of disassembly time and product cost, a comparative study between the DP given by a sequential approach and the proposed one which integrates both, HRC and parallel disassembly is done.
Similar content being viewed by others
References
Hofmann, E., Rüsch, M.: Industry 4.0 and the current status as well as future prospects on logistics. Comput. Ind. 89, 23–34 (2017). https://doi.org/10.1016/j.compind.2017.04.002
Alcácer, V., Cruz-Machado, V.: Scanning the Industry 4.0: a literature review on technologies for manufacturing systems. Eng. Sci. Technol. Int. J. 22, 899–919 (2019). https://doi.org/10.1016/j.jestch.2019.01.006
Lu, Y.: Industry 4.0: a survey on technologies, applications and open research issues. J. Ind. Inform. Integr. 6, 1–10 (2017). https://doi.org/10.1016/j.jii.2017.04.005
Salkin, C., Oner, M., Ustundag, A., Cevikcan, E.: A conceptual framework for Industry 4.0. In: Industry 4.0: Managing the Digital Transformation. Springer Series in Advanced Manufacturing, pp 3–23. Springer, Cham. https://doi.org/10.1007/978-3-319-57870-5 (2018)
Perales, D.P., Valero, F.A., García, A.B.: Industry 4.0: a classification scheme. In: Viles, E., Ormazábal, M., Lleó, A. (eds.) Closing the Gap Between Practice and Research in Industrial Engineering. Lecture Notes in Management and Industrial Engineering, pp. 343–350. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-58409-6_38
Vongbunyong, S., Kara, S., Pagnucco, M.: Basic behavior control of the vision-based cognitive robotic disassembly automation. Assembly Autom. 33(1), 38–56 (2013). https://doi.org/10.1108/01445151311294694
Vongbunyong, S., Kara, S., Pagnucco, M.: Learning and revision in cognitive robotics disassembly automation. Robot Comput. Integr. Manuf. 34, 79–94 (2015). https://doi.org/10.1016/J.RCIM.2014.11.003
Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. US 1(1), 33–57 (2007). https://doi.org/10.1007/s11721-007-0002-0
Pham, D.T., Castellani, M.: A comparative study of the Bees Algorithm as a tool for function optimisation. Cogent. Eng. 2(1), 1–28 (2015). https://doi.org/10.1080/23311916.2015.1091540
Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Report, Erciyes University, Kayseri, October (2005)
Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006). https://doi.org/10.1109/MCI.2006.329691
Hu, Q., Qiao, L., Peng, G.: An ant colony approach to operation sequencing optimization in process planning. Proc. IMeche Part B J. Eng. Manuf. 231(3), 470–489 (2017). https://doi.org/10.1177/0954405415616786
Zhang, X., Wang, S., Yi, L.: An integrated ant colony optimization algorithm to solve job allocating and tool scheduling problem. Proc. IMeche Part B J. Eng. Manuf. 232(1), 172–182 (2016). https://doi.org/10.1177/0954405416636038
Ghoreishi, N., Jakiela, M.J., Nekouzadeh, A.: A nongraphical method to determine the optimum disassembly plan in remanufacturing. J. Mech. Des. 135(2), 1–13 (2012). https://doi.org/10.1115/1.4023001
Bourjault, A.: Contribution d’une approche méthodologique de l’assemblage automatisé: élaboration automatique des séquences opératoires, Thèse d’Etat Université de Franche-Comté (1984)
Wang, Y., Jihong, L.: Subassembly identification for assembly sequence planning. Int. J. Adv. Manuf. Technol. 68, 781–793 (2013). https://doi.org/10.1007/S00170-013-4799-Y
Kheder, M., Trigui, M., Aifaoui, N.: Disassembly sequence planning based on a genetic algorithm. Proc. Inst. Mech. Eng. C J. Mech. 229(12), 2281–2290 (2015). https://doi.org/10.1177/0954406214557340
Deng, H., Qiang, T., Guo, X.: Probability evaluation modeling and planning of product disassembly profit. Int. J. Serv. Sci. Technol. 8(9), 327–340 (2015)
Smith, S., Hung, P.Y.: A parallel disassembly method for green product design. In: Proceeding of IEEE International Conference on Electronics Goes Green, Berlin, 9–12 September, pp.1–6. IEEE, New York (2012)
Guo, X., Liu, S., Zhou, M.C.: Disassembly sequence optimization for large-scale products with multi-resource constraints using scatter search and Petri nets. IEEE T Cybern. 46(11), 2435–2446 (2016). https://doi.org/10.1109/TCYB.2015.2478486
ElSayed, A., Kongar, E., Gupta, S.M.: An online genetic algorithm for automated disassembly sequence generation. In: Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering, Washington, DC, 28–31 August, pp.657–664. ASME, New York (2011)
Ben, H.R., Belhadj, I., Gouta, C., Trigui, M., Aifaoui, N., Hammadi, M.: An interoperability process between CAD system and CAE applications based on CAD data. Int. J. Interact. Des. Manuf. 12, 1039–1058 (2017). https://doi.org/10.1007/s12008-017-0445-5
Belhadj, I., Hammadi, M., Aifaoui, N.: Parallel disassembly approach with recycling rate calculation of industrial products. Int. J. Adv. Manuf. Technol. 113, 2969–2984 (2021). https://doi.org/10.1007/s00170-021-06830-z
Belhadj, I., Khemili, I., Trigui, M., Aifaoui, N.: Time computing technique for wear parts dismantling. Int. J. Adv. Manuf. Technol. 103, 3513–3527 (2019). https://doi.org/10.1007/s00170-019-03692-4
Aicha, M., Belhadj, I., Hammadi, M., Aifaoui, N.: A coupled method for disassembly plans evaluation based on operating time and quality indexes computing. Int. J. Precis. Eng. Manuf. Green Tech. (2021). https://doi.org/10.1007/s40684-021-00393-w
Aicha, M., Belhadj, I., Hammadi, M., Aifaoui, N.: A mathematical formulation for processing time computing in disassembly lines and its optimization. Comput. Ind. Eng. (2022). https://doi.org/10.1016/j.cie.2022.107933
Bedeoui, A., Ben Hadj, R., Hammadi, M., Aifaoui, N.: Tool workspace consideration for assembly plan generation. Assembly Automat. 41(5), 612–625 (2021). https://doi.org/10.1108/AA-05-2020-0063
Paramasivam, V., Senthil, V.: Analysis and evaluation of product design through design aspects using digraph and matrix approach. Int. J. Interact. Des. Manuf. 3, 13 (2009). https://doi.org/10.1007/s12008-009-0057-9
Favi, C., Germani, M.: A method to optimize assemblability of industrial product in early design phase: from product architecture to assembly sequence. Int. J. Interact. Des. Manuf. 6, 155–169 (2012). https://doi.org/10.1007/s12008-012-0147-y
Zhang, X.F., Yu, G., Hu, Z.Y.: Parallel disassembly sequence planning for complex products based on fuzzy rough sets. Int. J. Adv. Manuf. Technol. 72(1), 231–239 (2014). https://doi.org/10.1007/s00170-014-5655-4
Zhang, Z., Feng, Y., Tan, J.: A novel approach for parallel disassembly design based on a hybrid fuzzy-time model. J. Zhejiang Univ. Sci. A 16(9), 724–736 (2015)
Zhang, L., Peng, H.W., Bian, B.Y.: Parallel disassembly modeling and planning method of complex products. China Mech. Eng. 7, 937–943 (2014)
Kang, J.G., Lee, D.H., Xirouchakis, P.: Parallel disassembly sequencing with sequence-dependent operation times. CIRP Ann. Manuf. Tech. 50(1), 343–346 (2001)
Smith, S., Hung, P.Y.: A novel selective parallel disassembly planning method for green design. J. Eng. Des. 26(10), 283–301 (2015). https://doi.org/10.1080/09544828.2015.1045841
Yeh, W.C.: Optimization of the disassembly sequencing problem on the basis of self-adaptive simplified swarm optimization. IEEE Trans. Syst. Man Cybern. 42(1), 250–261 (2012)
Sheridan, T.B.: Telerobotics, Automation and Human Supervisory Control. MIT Press, Cambridge (1992)
Shah, J.A., Wiken, J., Williams, B., Breazeal, C.: Improved human–robot team performance using Chaski, a human-inspired plan execution system. In: Proceedings of the 6th ACM/IEEE International Conference on Human–Robot Interaction, pp. 29–36. ACM, New York (2011)
Gombolay, M.C., Huang, C., Shah, J.A.: Coordination of human–robot teaming with human task preferences. In: AAAI Fall Symposium Series on AI-HRI. Retrieved from https://interactive.mit.edu/sites/default/files/documents/Gombolay_2015_AAAI_FSS_AI-HRI.pdf (2015)
Kazerooni, H.: A review of the exoskeleton and human augmentation technology. In: Proceedings of the ASME 2008 Dynamic Systems and Control Conference, pp. 1539–1547. ASME, New York (2008)
Andrea, C., Filippo, C., Andrea, M.Z., Luigi, P., Paolo, R.: Human–robot collaborative assembly: a use-case application. IFAC-PapersOnLine 51–11, 194–199 (2018). https://doi.org/10.1016/j.ifacol.2018.08.257
Xu, W., Tang, Q., Liu, J., Liu, Z., Zhou, Z., Pham, D.T.: Disassembly sequence planning using discrete Bees algorithm for human–robot collaboration in remanufacturing. Robot. Comput. Int. Manuf. (2020). https://doi.org/10.1016/j.rcim.2019.101860
Meng, L.L., Behdad, S., Xiao, L., Minghui, Z.: Task allocation and planning for product disassembly with human–robot collaboration. Robot. Comput. Integr. Manuf. (2022). https://doi.org/10.1016/j.rcim.2021.102306
Li, K., Liu, Q., Xu, W., Liu, J., Zhou, Z., Feng, H.: Sequence planning considering human fatigue for human–robot collaboration in disassembly. Proc. CIRP 83, 95–104 (2019). https://doi.org/10.1016/j.procir.2019.04.127
Liu, Q., Liu, Z., Xu, W., Tang, Q., Zhou, Z., Pham, D.T.: Human–robot collaboration in disassembly for sustainable manufacturing. Int. J. Prod. Res. 57(12), 4027–4044 (2019). https://doi.org/10.1080/00207543.2019.1578906
Chatzikonstantinou, I., Giakoumis, D., Tzovaras, D.: A new shopfloor orchestration approach for collaborative human–robot device disassembly. In: 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation, pp. 225–230. IEEE (2019)
Huang, J., Pham, D.T., Li, R., Qu, M., Wang, Y., Kerin, M., Su, S., Ji, C., Mahomed, O., Khalil, R., et al.: An experimental human–robot collaborative disassembly cell. Comput. Ind. Eng. 155, 107189 (2021). https://doi.org/10.1016/j.cie.2021.107189
Parsa, S., Saadat, M.: Human–robot collaboration disassembly planning for endof-life product disassembly process. Robot. Comput. Integr. Manuf. 71, 102170 (2021). https://doi.org/10.1016/j.rcim.2021.102170
Lee, M.-L. Behdad, S. Liang, X., Zheng, M.: A real-time receding horizon sequence planner for disassembly in a human–robot collaboration setting. In: 2020 International Symposium on Flexible Automation. American Society of Mechanical Engineers Digital Collection, V001T04A004 (2020). https://doi.org/10.1115/ISFA2020-9657
Lee, M.-L. Behdad, S. Liang, X., Zheng, M.: Disassembly sequence planning considering human–robot collaboration. In: 2020 American Control Conference, ACC, pp. 2438–2443. IEEE (2020). https://doi.org/10.23919/ACC45564.2020.9147652
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Belhadj, I., Aicha, M. & Aifaoui, N. Product disassembly planning and task allocation based on human and robot collaboration. Int J Interact Des Manuf 16, 803–819 (2022). https://doi.org/10.1007/s12008-022-00908-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12008-022-00908-y