[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Product disassembly planning and task allocation based on human and robot collaboration

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Disassembly is a main phase of maintenance, remanufacturing and the end of life. It is always accomplished by human or robot. Manual disassembly has low effectiveness and high work cost whereas robotic disassembly is not sufficiently flexible to operate difficult operations. The use of robots in handling and assembling of parts becomes a necessity. Disassembly operations by simultaneously human and robot can enhance the productivity and reduce the product cost. This paper presents an interactive disassembly planning (DP) approach with human and robot collaboration (HRC). The proposed approach generates optimal DP strategies with human and robots tasks allocations. Moreover, based on an industrial manufacturing database and a set of relationship matrices, the proposed approach estimates the total disassembly time of the generated DP with respect of the minimum change of dismantling directions and tools. To highlight the added value of the proposed approach, an industrial case study, chosen from the literature, is treated. To demonstrate the reduction of disassembly time and product cost, a comparative study between the DP given by a sequential approach and the proposed one which integrates both, HRC and parallel disassembly is done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hofmann, E., Rüsch, M.: Industry 4.0 and the current status as well as future prospects on logistics. Comput. Ind. 89, 23–34 (2017). https://doi.org/10.1016/j.compind.2017.04.002

    Article  Google Scholar 

  2. Alcácer, V., Cruz-Machado, V.: Scanning the Industry 4.0: a literature review on technologies for manufacturing systems. Eng. Sci. Technol. Int. J. 22, 899–919 (2019). https://doi.org/10.1016/j.jestch.2019.01.006

    Article  Google Scholar 

  3. Lu, Y.: Industry 4.0: a survey on technologies, applications and open research issues. J. Ind. Inform. Integr. 6, 1–10 (2017). https://doi.org/10.1016/j.jii.2017.04.005

    Article  Google Scholar 

  4. Salkin, C., Oner, M., Ustundag, A., Cevikcan, E.: A conceptual framework for Industry 4.0. In: Industry 4.0: Managing the Digital Transformation. Springer Series in Advanced Manufacturing, pp 3–23. Springer, Cham. https://doi.org/10.1007/978-3-319-57870-5 (2018)

  5. Perales, D.P., Valero, F.A., García, A.B.: Industry 4.0: a classification scheme. In: Viles, E., Ormazábal, M., Lleó, A. (eds.) Closing the Gap Between Practice and Research in Industrial Engineering. Lecture Notes in Management and Industrial Engineering, pp. 343–350. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-58409-6_38

    Chapter  Google Scholar 

  6. Vongbunyong, S., Kara, S., Pagnucco, M.: Basic behavior control of the vision-based cognitive robotic disassembly automation. Assembly Autom. 33(1), 38–56 (2013). https://doi.org/10.1108/01445151311294694

    Article  Google Scholar 

  7. Vongbunyong, S., Kara, S., Pagnucco, M.: Learning and revision in cognitive robotics disassembly automation. Robot Comput. Integr. Manuf. 34, 79–94 (2015). https://doi.org/10.1016/J.RCIM.2014.11.003

    Article  Google Scholar 

  8. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. US 1(1), 33–57 (2007). https://doi.org/10.1007/s11721-007-0002-0

    Article  Google Scholar 

  9. Pham, D.T., Castellani, M.: A comparative study of the Bees Algorithm as a tool for function optimisation. Cogent. Eng. 2(1), 1–28 (2015). https://doi.org/10.1080/23311916.2015.1091540

    Article  Google Scholar 

  10. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Report, Erciyes University, Kayseri, October (2005)

  11. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006). https://doi.org/10.1109/MCI.2006.329691

    Article  Google Scholar 

  12. Hu, Q., Qiao, L., Peng, G.: An ant colony approach to operation sequencing optimization in process planning. Proc. IMeche Part B J. Eng. Manuf. 231(3), 470–489 (2017). https://doi.org/10.1177/0954405415616786

    Article  Google Scholar 

  13. Zhang, X., Wang, S., Yi, L.: An integrated ant colony optimization algorithm to solve job allocating and tool scheduling problem. Proc. IMeche Part B J. Eng. Manuf. 232(1), 172–182 (2016). https://doi.org/10.1177/0954405416636038

    Article  Google Scholar 

  14. Ghoreishi, N., Jakiela, M.J., Nekouzadeh, A.: A nongraphical method to determine the optimum disassembly plan in remanufacturing. J. Mech. Des. 135(2), 1–13 (2012). https://doi.org/10.1115/1.4023001

    Article  Google Scholar 

  15. Bourjault, A.: Contribution d’une approche méthodologique de l’assemblage automatisé: élaboration automatique des séquences opératoires, Thèse d’Etat Université de Franche-Comté (1984)

  16. Wang, Y., Jihong, L.: Subassembly identification for assembly sequence planning. Int. J. Adv. Manuf. Technol. 68, 781–793 (2013). https://doi.org/10.1007/S00170-013-4799-Y

    Article  Google Scholar 

  17. Kheder, M., Trigui, M., Aifaoui, N.: Disassembly sequence planning based on a genetic algorithm. Proc. Inst. Mech. Eng. C J. Mech. 229(12), 2281–2290 (2015). https://doi.org/10.1177/0954406214557340

    Article  Google Scholar 

  18. Deng, H., Qiang, T., Guo, X.: Probability evaluation modeling and planning of product disassembly profit. Int. J. Serv. Sci. Technol. 8(9), 327–340 (2015)

    Google Scholar 

  19. Smith, S., Hung, P.Y.: A parallel disassembly method for green product design. In: Proceeding of IEEE International Conference on Electronics Goes Green, Berlin, 9–12 September, pp.1–6. IEEE, New York (2012)

  20. Guo, X., Liu, S., Zhou, M.C.: Disassembly sequence optimization for large-scale products with multi-resource constraints using scatter search and Petri nets. IEEE T Cybern. 46(11), 2435–2446 (2016). https://doi.org/10.1109/TCYB.2015.2478486

    Article  Google Scholar 

  21. ElSayed, A., Kongar, E., Gupta, S.M.: An online genetic algorithm for automated disassembly sequence generation. In: Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering, Washington, DC, 28–31 August, pp.657–664. ASME, New York (2011)

  22. Ben, H.R., Belhadj, I., Gouta, C., Trigui, M., Aifaoui, N., Hammadi, M.: An interoperability process between CAD system and CAE applications based on CAD data. Int. J. Interact. Des. Manuf. 12, 1039–1058 (2017). https://doi.org/10.1007/s12008-017-0445-5

    Article  Google Scholar 

  23. Belhadj, I., Hammadi, M., Aifaoui, N.: Parallel disassembly approach with recycling rate calculation of industrial products. Int. J. Adv. Manuf. Technol. 113, 2969–2984 (2021). https://doi.org/10.1007/s00170-021-06830-z

    Article  Google Scholar 

  24. Belhadj, I., Khemili, I., Trigui, M., Aifaoui, N.: Time computing technique for wear parts dismantling. Int. J. Adv. Manuf. Technol. 103, 3513–3527 (2019). https://doi.org/10.1007/s00170-019-03692-4

    Article  Google Scholar 

  25. Aicha, M., Belhadj, I., Hammadi, M., Aifaoui, N.: A coupled method for disassembly plans evaluation based on operating time and quality indexes computing. Int. J. Precis. Eng. Manuf. Green Tech. (2021). https://doi.org/10.1007/s40684-021-00393-w

    Article  Google Scholar 

  26. Aicha, M., Belhadj, I., Hammadi, M., Aifaoui, N.: A mathematical formulation for processing time computing in disassembly lines and its optimization. Comput. Ind. Eng. (2022). https://doi.org/10.1016/j.cie.2022.107933

    Article  Google Scholar 

  27. Bedeoui, A., Ben Hadj, R., Hammadi, M., Aifaoui, N.: Tool workspace consideration for assembly plan generation. Assembly Automat. 41(5), 612–625 (2021). https://doi.org/10.1108/AA-05-2020-0063

    Article  Google Scholar 

  28. Paramasivam, V., Senthil, V.: Analysis and evaluation of product design through design aspects using digraph and matrix approach. Int. J. Interact. Des. Manuf. 3, 13 (2009). https://doi.org/10.1007/s12008-009-0057-9

    Article  Google Scholar 

  29. Favi, C., Germani, M.: A method to optimize assemblability of industrial product in early design phase: from product architecture to assembly sequence. Int. J. Interact. Des. Manuf. 6, 155–169 (2012). https://doi.org/10.1007/s12008-012-0147-y

    Article  Google Scholar 

  30. Zhang, X.F., Yu, G., Hu, Z.Y.: Parallel disassembly sequence planning for complex products based on fuzzy rough sets. Int. J. Adv. Manuf. Technol. 72(1), 231–239 (2014). https://doi.org/10.1007/s00170-014-5655-4

    Article  Google Scholar 

  31. Zhang, Z., Feng, Y., Tan, J.: A novel approach for parallel disassembly design based on a hybrid fuzzy-time model. J. Zhejiang Univ. Sci. A 16(9), 724–736 (2015)

    Article  Google Scholar 

  32. Zhang, L., Peng, H.W., Bian, B.Y.: Parallel disassembly modeling and planning method of complex products. China Mech. Eng. 7, 937–943 (2014)

    Article  Google Scholar 

  33. Kang, J.G., Lee, D.H., Xirouchakis, P.: Parallel disassembly sequencing with sequence-dependent operation times. CIRP Ann. Manuf. Tech. 50(1), 343–346 (2001)

    Article  Google Scholar 

  34. Smith, S., Hung, P.Y.: A novel selective parallel disassembly planning method for green design. J. Eng. Des. 26(10), 283–301 (2015). https://doi.org/10.1080/09544828.2015.1045841

    Article  Google Scholar 

  35. Yeh, W.C.: Optimization of the disassembly sequencing problem on the basis of self-adaptive simplified swarm optimization. IEEE Trans. Syst. Man Cybern. 42(1), 250–261 (2012)

    Article  Google Scholar 

  36. Sheridan, T.B.: Telerobotics, Automation and Human Supervisory Control. MIT Press, Cambridge (1992)

    Google Scholar 

  37. Shah, J.A., Wiken, J., Williams, B., Breazeal, C.: Improved human–robot team performance using Chaski, a human-inspired plan execution system. In: Proceedings of the 6th ACM/IEEE International Conference on Human–Robot Interaction, pp. 29–36. ACM, New York (2011)

  38. Gombolay, M.C., Huang, C., Shah, J.A.: Coordination of human–robot teaming with human task preferences. In: AAAI Fall Symposium Series on AI-HRI. Retrieved from https://interactive.mit.edu/sites/default/files/documents/Gombolay_2015_AAAI_FSS_AI-HRI.pdf (2015)

  39. Kazerooni, H.: A review of the exoskeleton and human augmentation technology. In: Proceedings of the ASME 2008 Dynamic Systems and Control Conference, pp. 1539–1547. ASME, New York (2008)

  40. Andrea, C., Filippo, C., Andrea, M.Z., Luigi, P., Paolo, R.: Human–robot collaborative assembly: a use-case application. IFAC-PapersOnLine 51–11, 194–199 (2018). https://doi.org/10.1016/j.ifacol.2018.08.257

    Article  Google Scholar 

  41. Xu, W., Tang, Q., Liu, J., Liu, Z., Zhou, Z., Pham, D.T.: Disassembly sequence planning using discrete Bees algorithm for human–robot collaboration in remanufacturing. Robot. Comput. Int. Manuf. (2020). https://doi.org/10.1016/j.rcim.2019.101860

    Article  Google Scholar 

  42. Meng, L.L., Behdad, S., Xiao, L., Minghui, Z.: Task allocation and planning for product disassembly with human–robot collaboration. Robot. Comput. Integr. Manuf. (2022). https://doi.org/10.1016/j.rcim.2021.102306

    Article  Google Scholar 

  43. Li, K., Liu, Q., Xu, W., Liu, J., Zhou, Z., Feng, H.: Sequence planning considering human fatigue for human–robot collaboration in disassembly. Proc. CIRP 83, 95–104 (2019). https://doi.org/10.1016/j.procir.2019.04.127

    Article  Google Scholar 

  44. Liu, Q., Liu, Z., Xu, W., Tang, Q., Zhou, Z., Pham, D.T.: Human–robot collaboration in disassembly for sustainable manufacturing. Int. J. Prod. Res. 57(12), 4027–4044 (2019). https://doi.org/10.1080/00207543.2019.1578906

    Article  Google Scholar 

  45. Chatzikonstantinou, I., Giakoumis, D., Tzovaras, D.: A new shopfloor orchestration approach for collaborative human–robot device disassembly. In: 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation, pp. 225–230. IEEE (2019)

  46. Huang, J., Pham, D.T., Li, R., Qu, M., Wang, Y., Kerin, M., Su, S., Ji, C., Mahomed, O., Khalil, R., et al.: An experimental human–robot collaborative disassembly cell. Comput. Ind. Eng. 155, 107189 (2021). https://doi.org/10.1016/j.cie.2021.107189

    Article  Google Scholar 

  47. Parsa, S., Saadat, M.: Human–robot collaboration disassembly planning for endof-life product disassembly process. Robot. Comput. Integr. Manuf. 71, 102170 (2021). https://doi.org/10.1016/j.rcim.2021.102170

    Article  Google Scholar 

  48. Lee, M.-L. Behdad, S. Liang, X., Zheng, M.: A real-time receding horizon sequence planner for disassembly in a human–robot collaboration setting. In: 2020 International Symposium on Flexible Automation. American Society of Mechanical Engineers Digital Collection, V001T04A004 (2020). https://doi.org/10.1115/ISFA2020-9657

  49. Lee, M.-L. Behdad, S. Liang, X., Zheng, M.: Disassembly sequence planning considering human–robot collaboration. In: 2020 American Control Conference, ACC, pp. 2438–2443. IEEE (2020). https://doi.org/10.23919/ACC45564.2020.9147652

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nizar Aifaoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belhadj, I., Aicha, M. & Aifaoui, N. Product disassembly planning and task allocation based on human and robot collaboration. Int J Interact Des Manuf 16, 803–819 (2022). https://doi.org/10.1007/s12008-022-00908-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-00908-y

Keywords

Navigation