[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Construction of de Bruijn sequences from product of two irreducible polynomials

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

We study a class of Linear Feedback Shift Registers (LFSRs) with characteristic polynomial f(x) = p(x)q(x) where p(x) and q(x) are distinct irreducible polynomials in 𝔽2[x]. Important properties of the LFSRs, such as the cycle structure and the adjacency graph, are derived. A method to determine a state belonging to each cycle and a generic algorithm to find all conjugate pairs shared by any pair of cycles are given. The process explicitly determines the edges and their labels in the adjacency graph. The results are then combined with the cycle joining method to efficiently construct a new class of de Bruijn sequences. An estimate of the number of resulting sequences is given. In some cases, using cyclotomic numbers, we can determine the number exactly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. van Aardenne-Ehrenfest, T., de Bruijn, N.G.: Circuits and trees in oriented linear graphs. Simon Stevin 28, 203–217 (1951)

    MathSciNet  MATH  Google Scholar 

  2. de Bruijn, N.G.: A combinatorial problem. Koninklijke Nederlandse Akademie v. Wetenschappen 49, 758–764 (1946)

    Google Scholar 

  3. Chan, A.H., Games, R.A., Key, E.L.: On the complexities of de Bruijn sequences. J. Combinat. Theory, Ser. A 33(3), 233–246 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang, Z., Chrisnata, J., Ezerman, M.F., Kiah, H.M.: Rates of DNA sequence profiles for practical values of read lengths. CoRR abs/1607.02279 (2016). arXiv:1607.02279

  5. Ding, C.: Codes from Difference Sets. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  6. Dubrova, E.: A scalable method for constructing Galois NLFSRs with period 2n−1 using cross-join pairs. IEEE Trans. on Inform. Theory 59(1), 703–709 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Etzion, T., Lempel, A.: Algorithms for the generation of full-length shift-register sequences. IEEE Trans. Inform. Theory 30(3), 480–484 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fredricksen, H.: A class of nonlinear de Bruijn cycles. J. Combinat. Theory, Ser. A 19(2), 192–199 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fredricksen, H.: A survey of full length nonlinear shift register cycle algorithms. SIAM Rev. 24(2), 195–221 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Golomb, S.W.: Shift Register Sequences. Aegean Park Press, Laguna Hills (1981)

    MATH  Google Scholar 

  11. Golomb, S.W., Gong, G.: Signal Design for Good Correlation: for Wireless Communication, Cryptography, and Radar. Cambridge University Press, New York (2004)

    MATH  Google Scholar 

  12. Hauge, E.R., Helleseth, T.: De Bruijn sequences, irreducible codes and cyclotomy. Discrete Math. 159(1-3), 143–154 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hauge, E.R., Mykkeltveit, J.: On the classification of de Bruijn sequences. Discrete Math. 148(1–3), 65–83 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Helleseth, T., Klove, T.: The number of cross-join pairs in maximum length linear sequences. IEEE Trans. on Inform. Theory 37(6), 1731–1733 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jansen, C.J.A., Franx, W.G., Boekee, D.E.: An efficient algorithm for the generation of de Bruijn cycles. IEEE Trans. on Inform. Theory 37(5), 1475–1478 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, C., Zeng, X., Helleseth, T., Li, C., Hu, L.: The properties of a class of linear FSRs and their applications to the construction of nonlinear FSRs. IEEE Trans. Inform. Theory 60(5), 3052–3061 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, C., Zeng, X., Li, C., Helleseth, T.: A class of de Bruijn sequences. IEEE Trans. Inform. Theory 60(12), 7955–7969 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, C., Zeng, X., Li, C., Helleseth, T., Li, M.: Construction of de Bruijn sequences from LFSRs with reducible characteristic polynomials. IEEE Trans. Inform. Theory 62(1), 610–624 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopaedia of Mathematics and Its Applications. Cambridge University Press, New York (1997)

    Google Scholar 

  20. Mykkeltveit, J., Szmidt, J.: On cross joining de Bruijn sequences. Contemporary Math. 632, 333–344 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Nathanson, M.: Elementary Methods in Number Theory. Graduate Texts in Mathematics. Springer, New York (2000)

    Google Scholar 

  22. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA fragment assembly. Proc. Natl. Acad. Sci. 98(17), 9748–9753 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ralston, A.: De Bruijn sequences - a model example of the interaction of discrete mathematics and computer science. Math. Mag. 55(3), 131–143 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sloane, N.J.A.: The Online Encyclopedia of Integer Sequences. https://oeis.org

  25. Spinsante, S., Gambi, E.: De Bruijn binary sequences and spread spectrum applications: A marriage possible? IEEE Aerosp. Electron. Syst. Mag. 28(11), 28–39 (2013)

    Article  Google Scholar 

  26. Storer, T.: Cyclotomy and Difference Sets. Lectures in Advanced Mathematics. Markham Pub. Co., Chicago (1967)

    MATH  Google Scholar 

Download references

Acknowledgements

The work of Z. Chang is supported by the Joint Fund of the National Natural Science Foundation of China under Grant U1304604. Research Grants TL-9014101684-01 and MOE2013-T2-1-041 support the research carried out by M. F. Ezerman, S. Ling, and H. Wang.

The collaboration leading to this paper was performed while Z. Chang was a visiting scholar at the Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University.

The authors thank the referees and the editor for their kind suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martianus Frederic Ezerman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Z., Ezerman, M.F., Ling, S. et al. Construction of de Bruijn sequences from product of two irreducible polynomials. Cryptogr. Commun. 10, 251–275 (2018). https://doi.org/10.1007/s12095-017-0219-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-017-0219-8

Keywords

Mathematics Subject Classification (2010)

Navigation