[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Pharmacogenetics of Lipid-Lowering Agents: an Update Review on Genotype-Dependent Effects of HDL-Targetingand Statin Therapies

  • Genetics and Genomics (A. Marian, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

High-density lipoproteins (HDL) are involved in reverse cholesterol transport. Results from randomized trials of HDL-targeting therapies, including cholesteryl ester transfer protein (CETP) inhibitors, have shown a lack of benefit in unsegmented populations. These observations could be explained by inter-individual variability of clinical responses to such agents depending on the patients’ genotypes. In parallel, although lowering of LDL cholesterol (LDL-c) with statin therapy reduces the risk of vascular events in a wide range of individuals, inter-individual variability exists with regard to LDL-c-lowering response as well as efficacy in reducing major cardiovascular events.

Recent Findings

Pharmacogenomic analyses were performed in the dal-OUTCOMES and dal-PLAQUE-2 studies. Beneficial and concordant results were observed in patients with the favorable genotype when treated with the CETP inhibitor dalcetrapib. Similarly, previous studies revealed genetic variants associated with differential LDL-c response to statin therapy.

Summary

In this review, we discuss the pharmacogenetic determinants of HDL-targeting and statin therapy responses in light of the latest available published data, and their potential therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Rosenson RS, Brewer HB Jr, Ansell BJ, et al. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat Rev Cardiol. 2016;13(1):48–60. This article reviews the potentially atheroprotective effects of HDL on reverse cholesterol transport, inflammation, and oxidative stress.

    Article  CAS  PubMed  Google Scholar 

  2. Assmann G, Schulte H. Relation of high-density lipoprotein cholesterol and triglycerides to incidence of atherosclerotic coronary artery disease (the PROCAM experience). Am J Cardiol. 1992;70(7):733–7.

    Article  CAS  PubMed  Google Scholar 

  3. Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density lipoprotein as a protective factor against coronary heart disease: the Framingham Study. Am J Med. 1977;62(5):707–14.

    Article  CAS  PubMed  Google Scholar 

  4. Pedersen TR, Kjekshus J, Berg K, et al. Baseline serum cholesterol and treatment effect in the Scandinavian Simvastatin Survival Study (4S). Lancet. 1995;345(8960):1274–5.

    Article  Google Scholar 

  5. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomized placebo-controlled trial. Lancet. 2002;360(9326):7–22.

    Article  Google Scholar 

  6. Baigent C, Keech A, Kearney PM, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomized trials of statins. Lancet. 2005;366(9493):1267–78. [Erratum in Lancet. 2005;366(9494):1358, Lancet. 2008;371(9630):2084].

    Article  CAS  PubMed  Google Scholar 

  7. Olsson AG, Schwartz GG, Szarek M, et al. High-density lipoprotein, but not low-density lipoprotein cholesterol levels influence short-term prognosis after acute coronary syndrome: results from the MIRACL trial. Eur Heart J. 2005;26(9):890–6.

    Article  CAS  PubMed  Google Scholar 

  8. Ray KK, Cannon CP, Cairns R, Morrow DA, Ridker PM, Braunwald E. Prognostic utility of apoB/AI, total cholesterol/HDL, non-HDL cholesterol, or hs-CRP as predictors of clinical risk in patients receiving statin therapy after acute coronary syndromes: results from PROVE IT-TIMI 22. Arterioscler Thromb Vasc Biol. 2009;29(3):424–30.

    Article  CAS  PubMed  Google Scholar 

  9. Voight BF, Peloso GM, Orho-Melander M, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomization study. Lancet. 2012;380(9841):572–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. HPS2-THRIVE Collaborative Group, Landray MJ, Haynes R, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371(3):203–12.

    Article  Google Scholar 

  11. AIM-HIGH Investigators, Boden WE, Probstfield JL, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365(24):2255–67.

    Article  Google Scholar 

  12. Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22.

    Article  CAS  PubMed  Google Scholar 

  13. Schwartz GG, Olsson AG, Abt M, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367(22):2089–99.

    Article  CAS  PubMed  Google Scholar 

  14. • Lincoff AM, Nicholls SJ, Riesmeyer JS, et al. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. ACCELERATE investigators. N Engl J Med. 2017;376(20):1933–42. This article reports the lack of clinical benefits of the CETP inhibitor evacetrapib in patients with stable vascular disease that have not been genetically defined.

    Article  PubMed  Google Scholar 

  15. Ridker PM, Paré G, Parker AN, Zee RY, Miletich JP, Chasman DI. Polymorphism in the CETP gene region, HDL cholesterol, and risk of future myocardial infarction: genomewide analysis among 18 245 initially healthy women from the Women’s Genome Health Study. Circ Cardiovasc Genet. 2009;2(1):26–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thompson A, Di Angelantonio E, Sarwar N, et al. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA. 2008;299(23):2777–88.

    Article  CAS  PubMed  Google Scholar 

  17. •• Tardif JC, Rheaume E, Lemieux Perreault LP, et al. Pharmacogenomic determinants of the cardiovascular effects of dalcetrapib. Circ Cardiovasc Genet. 2015;8(2):372–82. This pharmacogenomic study shows the genotype-dependent effects of the CETP inhibitor dalcetrapib on cardiovascular outcomes.

    Article  CAS  PubMed  Google Scholar 

  18. •• Tardif JC, Rhainds D, Brodeur M, et al. Genotype-dependent effects of dalcetrapib on cholesterol efflux and inflammation: concordance with clinical outcomes. Circ Cardiovasc Genet. 2016;9(4):340–8. This article provides additional support for the genotype-dependent effects of dalcetrapib by demonstrating concordant changes in cholesterol efflux and inflammation.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent C, Blackwell L, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81.

    Article  Google Scholar 

  20. Silverman MG, Ference BA, Im K, et al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA. 2016;316(12):1289–97.

    Article  CAS  PubMed  Google Scholar 

  21. Mangravite LM, Thorn CF, Krauss RM. Clinical implications of pharmacogenomics of statin treatment. Pharmacogenomics J. 2006;6(6):360–74.

    Article  CAS  PubMed  Google Scholar 

  22. Hopewell JC, Parish S, Offer A, et al. Impact of common genetic variation on response to simvastatin therapy among 18 705 participants in the Heart Protection Study. Eur Heart J. 2013;34(13):982–92.

    Article  CAS  PubMed  Google Scholar 

  23. Postmus I, Verschuren JJ, de Craen AJ, et al. Pharmacogenetics of statins: achievements, whole-genome analyses and future perspectives. Pharmacogenomics. 2012;13(7):831–40.

    Article  CAS  PubMed  Google Scholar 

  24. Postmus I, Trompet S, Deshmukh HA, et al. Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins. Nat Commun. 2014;5:5068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. The SEARCH Collaborative Group, Link E, Parish S, et al. SLCO1B1 variants and statin-induced myopathy—a genomewide study. N Engl J Med. 2008;359(8):789–99.

    Article  Google Scholar 

  26. Jacobson TA. Toward “pain-free” statin prescribing: clinical algorithm for diagnosis and management of myalgia. Mayo Clin Proc. 2008;83(6):687–700.

    Article  PubMed  Google Scholar 

  27. Wilke RA, Ramsey LB, Johnson SG, et al. The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin Pharmacol Ther. 2012;92(1):112–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Turner RM, Pirmohamed M. Cardiovascular pharmacogenomics: expectations and practical benefits. Clin Pharmacol Ther. 2014;95(3):281–93.

    Article  CAS  PubMed  Google Scholar 

  29. Verschuren JJ, Trompet S, Wessels JA, et al. A systematic review on pharmacogenetics in cardiovascular disease: is it ready for clinical application? Eur Heart. 2012;33(2):165–75.

    Article  Google Scholar 

  30. Carr DF, O'Meara H, Jorgensen AL, et al. SLCO1B1 genetic variant associated with statin-induced myopathy: a proof-of-concept study using the clinical practice research datalink. Clin Pharmacol Ther. 2013;94(6):695–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mangravite LM, Engelhardt BE, Medina MW, et al. A statin-dependent QTL for GATM expression is associated with statin-induced myopathy. Nature. 2013;502(7471):377–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nawarskas JJ. HMG-CoA reductase inhibitors and coenzyme Q10. Cardiol Rev. 2005;13(2):76–9.

    Article  PubMed  Google Scholar 

  33. Oh J, Ban MR, Miskie BA, Pollex RL, Hegele RA. Genetic determinants of statin intolerance. Lipids Health Dis. 2007;6:7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. CARDIoGRAMplusC4D Consortium, Deloukas P, Kanoni S, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45(1):25–33.

    Google Scholar 

  35. Verweij N, Eppinga RN, Hagemeijer Y, van der Harst P. Identification of 15 novel risk loci for coronary artery disease and genetic risk of recurrent events, atrial fibrillation and heart failure. Sci Rep. 2017;7(1):2761.

    Article  PubMed  PubMed Central  Google Scholar 

  36. • Mega JL, Stitziel NO, Smith JG, et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet. 2015;385(9984):2264–71. This article describes the analysis of a polygenic score consisting of 27 single nucleotide polymorphisms (SNPs) associated with CAD in statin prevention trials.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Natarajan P, Young R, Stitziel NO, et al. Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. Circulation. 2017;135(22):2091–101.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Claude Tardif.

Ethics declarations

Conflict of Interest

Dr. Nathan Messas has received financial support (Fellowship grants) from Abbott Vascular France, Biotronik France, and Biosensors France. Dr. Tardif has received research support from Amarin, AstraZeneca, DalCor, Esperion, Ionis, Merck, Pfizer, Sanofi, and Servier; honoraria from DalCor, Pfizer, Sanofi, and Servier, and holds minor equity interest in DalCor. He is mentioned as an author of a pending patent on pharmacogenomics-guided CETP inhibition. Dr. Dubé has received research support from AstraZeneca, DalCor, and Servier; honoraria from DalCor, holds minor equity interest in DalCor and holds stocks in Xenon. She is mentioned as an author of a pending patent on pharmacogenomics-guided CETP inhibition.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Genetics and Genomics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messas, N., Dubé, MP. & Tardif, JC. Pharmacogenetics of Lipid-Lowering Agents: an Update Review on Genotype-Dependent Effects of HDL-Targetingand Statin Therapies. Curr Atheroscler Rep 19, 43 (2017). https://doi.org/10.1007/s11883-017-0679-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-017-0679-5

Keywords

Navigation