[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Full characterizations of minimax inequality, fixed point theorem, saddle point theorem, and KKM principle in arbitrary topological spaces

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

This paper provides necessary and sufficient conditions for the existence of solutions for some important problems from optimization and non-linear analysis by replacing two typical conditions—continuity and quasiconcavity with a unique condition, weakening topological vector spaces to arbitrary topological spaces that may be discrete, continuum, non-compact or non-convex. We establish a single condition, \(\gamma \)-recursive transfer lower semicontinuity, which fully characterizes the existence of \(\gamma \)-equilibrium of minimax inequality without imposing any restrictions on topological space. The result is then used to provide full characterizations of fixed point theorem, saddle point theorem, and KKM principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The FS is for Fan [2] and Sonnenschein [36].

  2. The SS is for Shafer and Sonnenschein [37].

  3. When \(\gamma =\sup _{y \in X} \phi (y, y)=+\infty \), any point in X is clearly a \(\gamma \)-equilibrium with \(\gamma =+\infty \).

References

  1. Fan, K.: Minimax theorem. Proc. Nat. Acad. Sci. 39, 42–47 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fan, K.: Minimax inequality and applications. In: Shisha, O. (eds.) Inequality, vol. III (pp. 103–113). Academic Press, New York (1972)

  3. Fan, K.: Fixed point and related theorems for non-compact sets. In: Moeschlin, O., Pallaschke, D. (eds.) Game theory and related topics, pp. 151–156. North Holland, Amsterdam (1979)

    Google Scholar 

  4. Fan, K.: Some properties of convex sets related to fixed points theorems. Math. Ann. 266, 519–537 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Border, K.C.: Fixed point theorems with applications to economics and game theory. Cambridge University Press (1985)

  6. Allen, G.: Variational inequalities, complementarity problems, and duality theorems. J. Math. Anal. Appl. 58, 1–10 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ansari, Q.H., Lin, Y.C., Yao, J.C.: General KKM theorem with applications to minimax and variational inequalities. J. Optim. Theor. Appl. 104, 41–57 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cain Jr., G.L., González, L.: The Knaster–Kuratowski–Mazurkiewicz theorem and abstract convexities. J. Math. Anal. Appl. 338, 563–571 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chebbi, S.: Minimax inequality and equilibria with a generalized coercivity. J. Appl. Anal. 12, 117–125 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, C.M.: KKM property and fixed point theorems in metric spaces. J. Math. Anal. Appl. 323, 1231–1237 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Choudhury, B.S., Kundu, A.: A coupled coincidence point result in partially ordered metric spaces for compatible mappings. Nonlinear Anal. Theor. Methods Appl. 73, 2524–2531 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding, X.P.: Generalized KKM type theorems in FC-spaces with applications (I). J. Glob. Optim. 36, 581–596 (2006)

    Article  MATH  Google Scholar 

  13. Ding, X.P.: Generalized KKM type theorems in FC-spaces with applications (II). J. Glob. Optim. 38, 367–385 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ding, X.P., Tan, K.K.: A minimax inequality with application to existence of equilibrium points and fixed point theorems. Colloq. Math. 63, 233–274 (1992)

    MathSciNet  MATH  Google Scholar 

  15. Georgiev, P.G., Tanaka, T.: Vector-valued set-valued variants of Ky Fan’s inequality. J. Nonlinear Convex Anal. 1, 245–254 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Harjani, J., López, B., Sadarangani, K.: Fixed point theorems for mixed monotone operators and applications to integral equations. Nonlinear Anal. Theor. Methods Appl. 74, 1749–1760 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iusem, A.N., Soca, W.: New existence results for equilibrium problems. Nonlinear Anal. Theor. Methods Appl. 54, 621–635 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Karamardian, S.: Generalized complementarity problem. J. Optim. Theory Appl. 8, 416–427 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  19. Khanh, P.Q., Quan, N.H., Yao, J.C.: Generalized KKM-type theorems in GFC-spaces and applications. Nonlinear Anal. Theor. Methods Appl. 71, 1227–1234 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kim, I.S., Park, S.: Saddle point theorems on generalized convex spaces. J. Inequal. Appl. 5, 397–405 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Lignola, M.B.: Ky Fan inequalities and Nash equilibrium points without semicontinuity and compactness. J. Optim. Theory Appl. 94, 137–145 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lin, L.J., Chang, T.H.: S-KKM theorems, saddle points and minimax inequalities. Nonlinear Anal. Theor. Methods Appl. 34, 73–86 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin, L.J., Chen, H.L.: The study of KKM theorems with applications to vector equilibrium problems and implicit vector variational inequalities problems. J. Glob. Optim. 32, 135–157 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lin, L.J., Huang, Y.J.: Generalized vector quasi-equilibrium problems with applications to common fixed point theorems and optimization problems. Nonlinear Anal. Theor. Methods Appl. 66, 1275–1289 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin, J., Tian, G.: Minimax inequality equivalent to the Fan–Knaster–Kuratowski–Mazurkiewicz theorem. Appl. Math. Optim. 28, 173–179 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nessah, R., Tian, G.: Existence of solution of minimax inequalities, equilibria in games and fixed points without convexity and compactness assumptions. J. Optim. Theor. Appl. 157, 75–95 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tan, K.K.: G-KKM theorems, minimax inequalities and saddle points. Nonlinear Anal. Theor. Methods Appl. 30, 4151–4160 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tian, G.: Generalizations of the FKKM theorem and Ky-Fan minimax inequality, with applications to maximal elements, price equilibrium, and complementarity. J. Math. Anal. Appl. 170, 457–471 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tian, G.: Generalized KKM theorem and minimax inequalities and their applications. J. Optim. Theor. Appl. 83, 375–389 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tian, G., Zhou, J.: Quasi-Variational inequalities with non-compact sets. J. Math. Anal. Appl. 160, 583–595 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tian, G., Zhou, J.: The maximum theorem and the existence of Nash equilibrium of (generalized) games without lower semicontinuities. J. Math. Anal. Appl. 166, 351–364 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tian, G., Zhou, Z.: Quasi-inequalities without the concavity assumption. J. Math. Anal. Appl. 172, 289–299 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yuan, X.Z.: KKM principal, Ky Fan minimax inequalities and fixed point theorems. Nonlinear World 2, 131–169 (1995)

    MathSciNet  MATH  Google Scholar 

  34. Yuan, X.Z.: The study of minimax inequalities and applications to economies and variational inequalities. Mem. Am. Math. Soc. 132(625), 1–140 (1998)

    MathSciNet  Google Scholar 

  35. Zhou, J., Chen, G.: Diagonal convexity conditions for problems in convex analysis and quasi-variational inequalities. J. Math. Anal. Appl. 132, 213–225 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sonnenschein, H.: Demand theory without transitive preferences, with application to the theory of competitive equilibrium. In: Chipman, J., Hurwicz, L., Richter, M.K., Sonnenschein, H. (eds.) Preferences, utility, and demand. Harcourt Brace Jovanovich, New York (1971)

    Google Scholar 

  37. Shafer, W., Sonnenschein, H.: Equilibrium in abstract economies without ordered preferences. J. Math. Econ. 2, 345–348 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  38. Baye, M.R., Tian, G., Zhou, J.: Characterizations of the existence of equilibria in games with discontinuous and nonquasiconcave payoffs. Rev. Econ. Stud. 60, 935–948 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5, 285–309 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  40. Halpern, B.: Fixed-point theorems for outward maps. Doctoral Thesis, U.C.L.A. (1965)

  41. Halpern, B.: Fixed point theorems for set-valued maps in infinite dimensional spaces. Math. Ann. 189, 87–98 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  42. Halpern, B., Bergman, G.: A fixed-point theorem for inward and outward maps. Trans. Am. Math. Soc. 130(2), 353–358 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  43. Reich, S.: Fixed points in locally convex spaces. Mathematische Zeitschrift 125, 17–31 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  44. Istrăţescu, V.I.: Fixed point theory. D. Reidel Publishing Company (1981)

  45. Tian, G.: Fixed points theorems for mappings with non-compact and non-convex domains. J. Math. Anal. Appl. 158, 161–167 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  46. Knaster, B., Kuratowski, C., Mazurkiewicz, S.: ein beweis des fixpunktsatze \(n\) demensionale simpliexe. Fund. Math. 14, 132–137 (1929)

    MATH  Google Scholar 

  47. Tian, G.: Necessary and sufficient conditions for maximization of a class of preference relations. Rev. Econ. Stud. 60, 949–958 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tian, G., Zhou, J.: Transfer continuities, generalizations of the Weierstrass and maximum theorems: a full characterization. J. Math. Econ. 24, 281–303 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhou, J.X., Tian, G.: Transfer method for characterizing the existence of maximal elements of binary relations on compact or noncompact sets. SIAM J. Optim. 2, 360–375 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rodríguez-Palmero, C., García-Lapresta, J.L.: Maximal elements for irreflexive binary relations on compact sets. Math. Soc. Sci. 43, 55–60 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  51. Tian, G.: On the existence of equilibria in games with arbitrary strategy spaces and preferences. J. Math. Econ. 60, 9–16 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Tian, G.: On the existence of price equilibrium in economies with excess demand functions. Econ. Theor. Bull. 4, 5–16 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Tian.

Additional information

I shall thank an anonymous referee for helpful comments and suggestions. Financial support from the National Natural Science Foundation of China (NSFC-71371117) and the Key Laboratory of Mathematical Economics (SUFE) at Ministry of Education of China is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, G. Full characterizations of minimax inequality, fixed point theorem, saddle point theorem, and KKM principle in arbitrary topological spaces. J. Fixed Point Theory Appl. 19, 1679–1693 (2017). https://doi.org/10.1007/s11784-016-0314-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-016-0314-z

Keywords

Mathematics Subject Classification

Navigation