[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Constrained complex correntropy applied to adaptive beamforming in non-Gaussian noise environment

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper introduces a novel constrained maximum complex correntropy criterion (CMCCC) for adaptive beamforming. The work addresses the reception of the desired signal in the presence of non-Gaussian noise sources by leveraging the CMCCC within the beamforming framework. It is essential to highlight that correntropy, a similarity function that can extract high-order statistical insights from data, has found application in various domains as a cost function, particularly excelling in non-Gaussian noise environments. One recent application involves its utilization in the realm of adaptive beamforming. However, due to the restriction of correntropy to real-valued data, straightforward application to beamforming scenarios involving complex-valued measurements was not feasible. This paper introduces an approach tailored to handle complex-valued data. We provide an analysis of the mean square convergence of the proposed algorithm and derive the stability condition for convergence. Our simulation results indicate the effectiveness and superiority of the proposed CMCCC method, which maintains robustness against impulsive outliers while achieving superior performance compared to conventional adaptive beamformers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Van Trees, H.L.: Detection, estimation, and modulation theory, Optimum Array Processing, Hoboken, NJ. Wiley, USA (2004)

    Google Scholar 

  2. Van Veen, B.D., Buckley, K.M.: Beamforming: a versatile approach to spatial filtering. IEEE ASSP Mag. 5(2), 4–24 (1988)

    Article  ADS  Google Scholar 

  3. Applebaum, S.: Adaptive arrays. IEEE Trans. Antennas Propag. AP–24(5), 585–598 (1976)

    Article  ADS  Google Scholar 

  4. Frost, O.L., III.: An algorithm for linearly constrained adaptive array processing. Proc. IEEE 60(8), 926–935 (1972)

    Article  Google Scholar 

  5. Widrow, B., McCool, J.M., Larimore, M.G., Johnson, C.R.: Stationary and nonstationary learning characteristics of the LMS adaptive filter. Proc. IEEE 64(8), 1151–1162 (1976)

    Article  MathSciNet  Google Scholar 

  6. Kwong, R.H., Johnston, E.W.: A variable step size LMS algorithm. IEEE Trans. Signal Process. 40(7), 1633–1642 (1992)

    Article  ADS  Google Scholar 

  7. Arablouei, R., Dogancay, K., Werner, S.: On the mean-square performance of the constrained LMS algorithm. Signal Process. 117, 192–197 (2015)

    Article  Google Scholar 

  8. Slock, D.T.M.: On the convergence behavior of the LMS and the normalized LMS algorithms. IEEE Trans. Signal Process. 41(9), 2811–2825 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  9. Wax, M., Anu, Y.: Performance analysis of the minimum variance beamformer. IEEE Trans. Signal Process. 44(4), 928–937 (1996)

    Article  ADS  Google Scholar 

  10. Agarwal, K., Rai, C.S., Yadav, R.: Lp minimisation in sparse array beamforming using semidefinite relaxation. Int. J. Electron. Letter

  11. Liu, W., Pokharel, P.P., Principe, J.: Correntropy: a localized similarity measure. In: The 2006 IEEE International Joint Conference on Neural Network Proceedings 16, 4919–4924 (2006)

  12. Liu, W., Pokharel, P.P., Principe, J.: Correntropy: Properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process. 55(11), 5286–5298 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  13. Chen, L., Qu, H., Zhao, J.: Generalized correntropy based deep learning in presence of non-Gaussian noises. Neurocomputing 278(22), 41–50 (2017)

    Google Scholar 

  14. He, R., Zheng, W.-S., Hu, B.-G.: Maximum correntropy criterion for robust face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1561–1576 (2011)

    Article  PubMed  Google Scholar 

  15. Zhang, C., Guo, Y., Wang, F., Chen, B.: Generalized maximum correntropy-based echo state network for robust nonlinear system identification. In: 2018 International Joint Conference on Neural Networks (IJCNN) pp. 1-6 (2018)

  16. Fontes, A.I.R., Martins, A., Silveira, L.F.Q., Principe, J.C.: Performance evaluation of the correntropy coefficient in automatic modulation classification. Expert Syst. Appl. 42(1), 1–8 (2015)

    Article  Google Scholar 

  17. Chen, B., Xing, L., Zhao, H., Zheng, N., Príncipe, J.C.: Generalized correntropy for robust adaptive filtering. IEEE Trans. Signal Process. 64(13), 3376–3387 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. Singh, A., Principe, J. C.: Using correntropy as a cost function in linear adaptive filters. In: International Joint Conference on Neural Networks, pp. 2950-2955 (2009)

  19. Zhao, S., Chen, B., Principe, J. C.: Kernel adaptive filtering with maximum correntropy criterion. In: International Joint Conference on Neural Networks, pp. 2012-2017 (2011)

  20. Liu, X., Chen, B., Zhao, H., Qin, J., Cao, J.: Maximum correntropy kalman filter with state constraints. IEEE Access. 5, 25846–25853 (2017)

    Article  Google Scholar 

  21. Wang, F., He, Y., Wang, S., Chen, B.: Maximum total correntropy adaptive filtering against heavy-tailed noises. Signal Process. 141, 84–95 (2017)

    Article  Google Scholar 

  22. Peng, S., Chen, B., Sun, L., Ser, W., Lin, Z.: Constrained maximum correntropy adaptive filtering. Signal Process. 140, 116–126 (2017)

    Article  Google Scholar 

  23. Guimarães, J.P.F., Da Silva, F.B., Fontes, A.I.R., Von Borries, R., De, M., Martins, A.: Complex correntropy applied to a compressive sensing problem in an impulsive noise environment. IEEE Access 7, 151652–151660 (2019)

    Article  Google Scholar 

  24. Guimarães, J.P.F., Fontes, A.I.R., Rego, J.B.A., Martins, A., Príncipe, J.C.: Complex correntropy: probabilistic interpretation and application to complex-valued data. IEEE Signal Process. Lett. 24(1), 42–45 (2017)

    Article  ADS  Google Scholar 

  25. Guimarães, J. P. F., Fontes, A. I. R., da Silva, F. B., Martins, A., Borries, R. v.: Complex correntropy induced metric applied to compressive sensing with complex-valued data. IEEE Southwest Symposium Image Analysis and Interpretation (SSIAI), Las Vegas, NV, USA, pp. 21-24 (2018)

  26. Aquino, M.B.L.F., Guimarães, J.P., Linhares, L.L.S., et al.: Performance evaluation of the maximum complex correntropy criterion with adaptive kernel width update. EURASIP J. Adv. Signal Process. 53, 1–10 (2019)

    Google Scholar 

  27. Qian, G., Wang, S., Wang, L., Duan, S.: Convergence analysis of a fixed point algorithm under maximum complex correntropy criterion. IEEE Signal Process. Lett. 25(12), 1830–1834 (2018)

    Article  ADS  Google Scholar 

  28. Qian, G., Wang, S.: Generalized complex correntropy: application to adaptive filtering of complex data. IEEE Access 6, 19113–19120 (2018)

    Article  Google Scholar 

  29. Bouboulis, P., Theodoridis, S.: Extension of wirtinger’s calculus to reproducing kernel hilbert spaces and the complex kernel LMS. IEEE Trans. Signal Process. 59(3), 964–978 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  30. Franken, D.: Complex digital networks: a sensitivity analysis based on the Wirtinger calculus. IEEE Trans. Circuit. Syst. I Fund. Theory Appl. 44(9), 839–843 (1997)

    Article  MathSciNet  Google Scholar 

  31. Godara, L.C., Cantoni, A.: Analysis of constrained LMS algorithm with application to adaptive beamforming using perturbation sequences. IEEE Trans. Antennas Propag. 34(3), 368–379 (1986)

    Article  ADS  Google Scholar 

  32. Zhang, L., Liu, W., Langley, R.J.: A class of constrained adaptive beamforming algorithms based on uniform linear arrays. IEEE Trans. Signal Process. 58(7), 3916–3922 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  33. Lee, Y., Wu, W.R.: A robust adaptive generalized sidelobe canceller with decision feedback. IEEE Trans. Antennas Propag. 53(11), 3822–3832 (2005)

    Article  ADS  Google Scholar 

  34. Huang, F., Zhang, J., Zhang, S.: NLMS algorithm based on variable parameter cost function robust against impulsive interferences. IEEE Trans. Circuit. Syst. II: Express Briefs 64(5), 600–604 (2016)

    Google Scholar 

  35. Lee, M.S., Katkovnik, V., Kim, Y.H.: Minimax robust M-beamforming for radar array with antenna switching. IEEE Trans. Antennas Propag. 53(8), 2549–2557 (2005)

  36. Adnan, N.H.M., Rafiqul, I.M., Alam, A.H.M.Z.: Effects of inter element spacing on large antenna array characteristics. IEEE 4th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA)), Putrajaya, Malaysia, pp. 1-5 (2017)

  37. Omini, O., Baasey, D., Adekola, S.: Impact of element spacing on the radiation pattern of planar array of monopole antenna. J. Comput. Commun. 7, 36–51 (2010)

    Article  Google Scholar 

  38. Vadhvana, S., Yadav, S.K., Bhattacharjee, S.S., George, N.V.: An improved constrained LMS algorithm for fast adaptive beamforming based on a low rank approximation. IEEE Trans. Circuit. Syst. II: Express Briefs 69(8), 3605–3609 (2022)

    Google Scholar 

  39. Griffiths, L., Jim, C.: An alternative approach to linearly constrained adaptive beamforming. IEEE Trans. Antennas Propag. 30(1), 27–34 (1982)

    Article  ADS  Google Scholar 

  40. Werner, S., Apolinario, J., Jr., de Campos, M.L.R., Diniz, P.S.R.: Low-complexity constrained affine-projection algorithms. IEEE Trans. Signal Process. 53(12), 4545–4555 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  41. Dai, Z., Guo, L.: Efficient adaptive beamforming of underwater acoustic target under impulsive noise,”IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT), Hefei, China, pp. 173-177 (2022)

  42. Wen, J., Zhou, X., Liao, B., Guo, C., Chan, S.-C.: Adaptive beamforming in an impulsive noise environment using matrix completion. IEEE Commun. Lett. 22(4), 768–771 (2018)

    Article  ADS  Google Scholar 

  43. Han, S., Jeong, K.-H., Principe, J.: Robust adaptive minimum entropy beamformer in impulsive noise, pp. 437–440. Thessaloniki, Greece, IEEE Workshop Machine Learning Signal Process. (2007)

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to the concept and design of the paper. KA formulated the research objectives, designed the experimental methodology, performed the computations, and wrote the main manuscript text. CR conceived of the presented idea, and discussed the results.

Corresponding author

Correspondence to Kanika Agarwal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, K., Rai, C.S. Constrained complex correntropy applied to adaptive beamforming in non-Gaussian noise environment. SIViP 18, 2333–2343 (2024). https://doi.org/10.1007/s11760-023-02910-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02910-7

Keywords

Navigation