[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A multi-balanced hybrid optimization technique to track objects using rough set theory

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, the process of object detection and tracking is performed by means of five stages, namely frame segregation, shot segmentation, shape and texture feature extraction, object detection in frames through rough set theory and soft computing evolutionary programming with hybrid genetic algorithm particle swarm optimization. In the first stage, the input video file is segregated into number of frames and then the image frame from the specific shots is alone separated in the second stage with the help of DCT transformations. The third phase involves extracting shape and texture features from the shot segmented image frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rosehip, J., Karamu, M.R., Bandarabadi, M.: Wavelet transform and supervised learning methods for object tracking. Eur. J. Sci. Res. 41(4), 626–631 (2010)

    Google Scholar 

  2. Waykole, T.S., Jain, Y.K.: Detecting and tracking of moving objects from video. Int. J. Comput. Appl. 81(18), 0975–8887 (2013)

    Google Scholar 

  3. Dargazany, A., Soleimani, A.: Hand tracking using kernel density approximation. In: Proceeding of the IEEE Transactions on Artificial Intelligence and Computational Intelligence (2010)

  4. Cheikh, F.A., Saha, S.K., Rudakova, V., Wang, P.: Multi-people tracking across multiple camras. Int. J. New Comput. Archit. Appl. 2(1), 23–33 (2012)

  5. Basu, S., Di Biano, R., Karki, M., Stagg, M., Weltman, J., Mukhopadhyay, S., Ganguly, S.: An agile framework for real-time motion tracking

  6. Kao, C., Hwang, B., Hsieh, C., Huang, Y., Chen, H., Wu, S.: The integrated gaze and object tracking techniques to explore the user’s navigation. In: Proceedings of the 2014 International Conference on Machine Learning and Cybernetics, pp. 13–16 (2014)

  7. Hamida, A.B., Koubaa, M., Amar, C.B., Nicolas, H.: Parallelepipedic shape modeling for moving objects in video surveillance systems. In: Science and Information Conference, pp. 27–29 (2014)

  8. Balasubramanian, A., Kamate, S., Yilmazer, N.: Utilization of robust video processing techniques to aid efficient object detection and tracking. Proc. Comput. Sci. 36, 579–586 (2014)

    Article  Google Scholar 

  9. Ochs, P., Malik, J., Brox, T.: Segmentation of moving objects by long term video analysis. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1187–1200 (2014)

  10. Chen, I.K., Hsu, S.L., Chi, C.Y., Chen, L.G.: Automatic video segmentation and object tracking with real-time RGB-D data. In: IEEE International Conference on Consumer Electronics (ICCE) (2014)

  11. Nayyar, A.: Integrated security solution for moving object tracking system. Int. J. Eng. Sci. 5 (2011)

  12. Fukui, S., Nishiyama, R., Iwahori, Y., Bhuyan, M.K., Woodham, R.J.: Object tracking with improved detector of objects similar to target. Proc. Comput. Sci. 60, 740–749 (2015)

    Article  Google Scholar 

  13. Moo Yi, K., Jeong, H., Kim, S.W., Yin, S., Oh, S., Young Choi, J.: Visual tracking of non-rigid objects with partial occlusion through elastic structure of local patches and hierarchical diffusion. Image Vis. Comput. 39, 23–37 (2015)

    Article  Google Scholar 

  14. Choi, I.H., Pak, J.M., Ahn, C.K., Lee, S.H., Lim, M.T., Song, M.K.: Arbitration algorithm of FIR filter and optical flow based on ANFIS for visual object tracking. Measurement 75, 338–353 (2015)

    Article  Google Scholar 

  15. Zhang, S., Sui, Y., Zhao, S., Xin, Y., Zhang, L.: Multi-local-task learning with global regularization for object tracking. Pattern Recogn. 48, 3881–3894 (2015)

    Article  Google Scholar 

  16. Diaz-Ramirez, V.H., Contreras, V., Kober, V., Picos, K.: Real-time tracking of multiple objects using adaptive correlation filters with complex constraints. Opt. Commun. 309, 265–278 (2013)

    Article  Google Scholar 

  17. Rätsch, M., Blumer, C., Vetter, T., Teschke, G.: Efficient object tracking by condentional and cascaded image sensing. Comput. Stand. Interfaces 34(6), 549–557 (2012)

  18. Wang, Y., Zhao, Q.: Robust object tracking via online principal component–canonical correlation analysis (P3CA). Signal Image Video Process. 9, 159–174 (2015)

    Article  Google Scholar 

  19. Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: Sparse representations of image gradient orientations for visual recognition and tracking. In: CVPR 2011 WORKSHOPS, IEEE, pp. 26–33 (2012)

  20. Zhang, S., Zhou, H., Jiang, F., Li, X.: Robust visual tracking using structurally random projection and weighted least squares. IEEE Trans. Circuits Syst. Video Technol. 25(11), 1749–1760 (2015)

    Article  Google Scholar 

  21. Sun, X., Yao, H., Zhang, S., Li, D.: Non-rigid object contour tracking via a novel supervised level set model. IEEE Trans. Image Process. 24(11), 3386–3399 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Shanmugapriya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanmugapriya, K., Malar, R.S.M. A multi-balanced hybrid optimization technique to track objects using rough set theory. SIViP 11, 415–421 (2017). https://doi.org/10.1007/s11760-016-0976-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0976-4

Keywords

Navigation