Abstract
In this paper, the process of object detection and tracking is performed by means of five stages, namely frame segregation, shot segmentation, shape and texture feature extraction, object detection in frames through rough set theory and soft computing evolutionary programming with hybrid genetic algorithm particle swarm optimization. In the first stage, the input video file is segregated into number of frames and then the image frame from the specific shots is alone separated in the second stage with the help of DCT transformations. The third phase involves extracting shape and texture features from the shot segmented image frames.
Similar content being viewed by others
References
Rosehip, J., Karamu, M.R., Bandarabadi, M.: Wavelet transform and supervised learning methods for object tracking. Eur. J. Sci. Res. 41(4), 626–631 (2010)
Waykole, T.S., Jain, Y.K.: Detecting and tracking of moving objects from video. Int. J. Comput. Appl. 81(18), 0975–8887 (2013)
Dargazany, A., Soleimani, A.: Hand tracking using kernel density approximation. In: Proceeding of the IEEE Transactions on Artificial Intelligence and Computational Intelligence (2010)
Cheikh, F.A., Saha, S.K., Rudakova, V., Wang, P.: Multi-people tracking across multiple camras. Int. J. New Comput. Archit. Appl. 2(1), 23–33 (2012)
Basu, S., Di Biano, R., Karki, M., Stagg, M., Weltman, J., Mukhopadhyay, S., Ganguly, S.: An agile framework for real-time motion tracking
Kao, C., Hwang, B., Hsieh, C., Huang, Y., Chen, H., Wu, S.: The integrated gaze and object tracking techniques to explore the user’s navigation. In: Proceedings of the 2014 International Conference on Machine Learning and Cybernetics, pp. 13–16 (2014)
Hamida, A.B., Koubaa, M., Amar, C.B., Nicolas, H.: Parallelepipedic shape modeling for moving objects in video surveillance systems. In: Science and Information Conference, pp. 27–29 (2014)
Balasubramanian, A., Kamate, S., Yilmazer, N.: Utilization of robust video processing techniques to aid efficient object detection and tracking. Proc. Comput. Sci. 36, 579–586 (2014)
Ochs, P., Malik, J., Brox, T.: Segmentation of moving objects by long term video analysis. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1187–1200 (2014)
Chen, I.K., Hsu, S.L., Chi, C.Y., Chen, L.G.: Automatic video segmentation and object tracking with real-time RGB-D data. In: IEEE International Conference on Consumer Electronics (ICCE) (2014)
Nayyar, A.: Integrated security solution for moving object tracking system. Int. J. Eng. Sci. 5 (2011)
Fukui, S., Nishiyama, R., Iwahori, Y., Bhuyan, M.K., Woodham, R.J.: Object tracking with improved detector of objects similar to target. Proc. Comput. Sci. 60, 740–749 (2015)
Moo Yi, K., Jeong, H., Kim, S.W., Yin, S., Oh, S., Young Choi, J.: Visual tracking of non-rigid objects with partial occlusion through elastic structure of local patches and hierarchical diffusion. Image Vis. Comput. 39, 23–37 (2015)
Choi, I.H., Pak, J.M., Ahn, C.K., Lee, S.H., Lim, M.T., Song, M.K.: Arbitration algorithm of FIR filter and optical flow based on ANFIS for visual object tracking. Measurement 75, 338–353 (2015)
Zhang, S., Sui, Y., Zhao, S., Xin, Y., Zhang, L.: Multi-local-task learning with global regularization for object tracking. Pattern Recogn. 48, 3881–3894 (2015)
Diaz-Ramirez, V.H., Contreras, V., Kober, V., Picos, K.: Real-time tracking of multiple objects using adaptive correlation filters with complex constraints. Opt. Commun. 309, 265–278 (2013)
Rätsch, M., Blumer, C., Vetter, T., Teschke, G.: Efficient object tracking by condentional and cascaded image sensing. Comput. Stand. Interfaces 34(6), 549–557 (2012)
Wang, Y., Zhao, Q.: Robust object tracking via online principal component–canonical correlation analysis (P3CA). Signal Image Video Process. 9, 159–174 (2015)
Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: Sparse representations of image gradient orientations for visual recognition and tracking. In: CVPR 2011 WORKSHOPS, IEEE, pp. 26–33 (2012)
Zhang, S., Zhou, H., Jiang, F., Li, X.: Robust visual tracking using structurally random projection and weighted least squares. IEEE Trans. Circuits Syst. Video Technol. 25(11), 1749–1760 (2015)
Sun, X., Yao, H., Zhang, S., Li, D.: Non-rigid object contour tracking via a novel supervised level set model. IEEE Trans. Image Process. 24(11), 3386–3399 (2015)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shanmugapriya, K., Malar, R.S.M. A multi-balanced hybrid optimization technique to track objects using rough set theory. SIViP 11, 415–421 (2017). https://doi.org/10.1007/s11760-016-0976-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-016-0976-4