[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Cytocompatible and stimuli-responsive chitosan based carrier with 3-aminopropyl(diethoxy)methylsilane for controlled release of cefixime

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This study highlights the development of smart stimuli-responsive carrier for controlled drug release system. Novel cytocompatible and injectable carriers were synthesized using chitosan and poly(vinyl alcohol) with different amounts of 3-aminopropyl(diethoxy)methylsilane (3-APDEMS). The characterizations of the prepared samples were accomplished via FTIR, SEM, TGA, mechanical properties, swelling, biodegradation, antimicrobial activity, antioxidant activity, anti-inflammatory activity, cytotoxicity and drug release profile. FTIR analysis was performed to approve the siloxane linkages among the integrated constituents. SEM images demonstrated the morphology, while TGA showed the highest thermal stability (593 °C offset temperature) for hydrogel with 150 μL APDEMS concentration. The antimicrobial response of hydrogels toward Bacillus cereus and E.coli was noticeable. The antioxidant activity and anti-inflammatory activity were performed to check the behavior of the MCP series against the free radical generating substance and inflammation response, respectively. All stimuli-responsive crosslinked carriers appeared cytocompatible for plated 3T3 fibroblast cells as inspected by continuous increase in the viability of cells from 24 to 48 h and 72 h post initial seeding in all samples. The swelling behavior in buffer solution (at different pH) confirmed these carriers as pH-responsive. These carriers at optimum amount of 3-APDEMS showed 99.5% drug release in phosphate buffer saline solution at 7.4 pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abraham A, Soloman PA, Rejini VO (2016) Preparation of chitosan-polyvinyl alcohol blends and studies on thermal and mechanical properties. Procedia Technol 24:741–748

    Google Scholar 

  • Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100(1):5–28

    CAS  PubMed  Google Scholar 

  • Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121

    CAS  PubMed  Google Scholar 

  • Aronson J (2011) A worldwide yearly survey of new data in adverse drug reactions, vol 33. Elsevier, Amsterdam

    Google Scholar 

  • Ata S, Rasool A, Islam A, Bibi I, Rizwan M, Azeem MK, Qureshi AUR, Iqbal M (2019) Loading of Cefixime to pH sensitive chitosan based hydrogel and investigation of controlled release kinetics. Int J Biol Macromol 155:1236–1244

    PubMed  Google Scholar 

  • Bashir A, Jabeen S, Gull N, Islam A, Sultan M, Ghaffar A, Khan SM Iqbal SS, Jamil T (2018) Co-concentration effect of silane with natural extract on biodegradable polymeric films for food packaging. Int J Biol Macromol 106:351–359

    CAS  PubMed  Google Scholar 

  • BeMiller JN (2008) Polysaccharides: occurrence, significance, and properties. Glycoscience: chemistry and chemical biology. Springer, Berlin, pp 1413–1435

    Google Scholar 

  • Butt A, Jabeen S, Nisar N, Islam A, Gull N, Iqbal SS, Khan SM, Yameen B (2019) Controlled release of cephradine by biopolymers based target specific crosslinked hydrogels. Int J Biol Macromol 121:104–112

    CAS  PubMed  Google Scholar 

  • Chandra S, Chatterjee P, Dey P, Bhattaharya S (2012) Evaluation of in vitro anti-inflammatory activity of coffee against the denaturation of protein. Asian Pacific J Trop Biomed 2(1):S178–S180

    Google Scholar 

  • Cho D, Netravali AN, Joo YL (2012) Mechanical properties and biodegradability of electrospun soy protein Isolate/PVA hybrid nanofibers. Polym Degrad Stab 97(5):747–754

    CAS  Google Scholar 

  • El-Hefian EA, Nasef MM, Yahaya AH (2011) Preparation and characterization of chitosan/poly (vinyl alcohol) blended films: mechanical, thermal and surface investigations. E-J Chem 8(1):91–96

    CAS  Google Scholar 

  • Fan Y, He C, Li Y (2022) Iron oxide clusters on g-C3N4 promote the electron–hole separation in photo-Fenton reaction for efficient degradation of wastewater. Chem Pap 76:7553–7563

    CAS  Google Scholar 

  • Freddie Bray JF (2018) Isabelle Soerjomataram, Rebecca L Siegel, Lindsey A Torre, Ahmedin Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    PubMed  Google Scholar 

  • Gallo J, Raska M, Kriegova E, Goodman SB (2017) Inflammation and its resolution and the musculoskeletal system. J Orthop Transl 10:52–67

    Google Scholar 

  • Gao Q, Zhou L, Xu S, Dai S, Zhu Q, Li Y (2023) Significant improvement and mechanism of tetracycline degradation with the synergistic piezoelectric effect of ZnO/CuS Z-scheme heterojunction photocatalysts. Environ Sci Nano 10:581–594

    CAS  Google Scholar 

  • Garfunkel LC, Kaczorowski J, Christy C (2007) Pediatric clinical advisor E-book: instant diagnosis and treatment. Elsevier Health Sciences, Amsterdam

    Google Scholar 

  • Grunfeld EA, Low E, Cooper AF (2010) Cancer survivors’ and employers’ perceptions of working following cancer treatment. Occup Med 60:611–617

    CAS  Google Scholar 

  • Gull N, Khan SM, Butt MTZ, Khalid S, Shafiq M, Islam A, Asim S, Hafeez S, Khan RU (2019a) In vitro study of chitosan-based multi-responsive hydrogels as drug release vehicles: a preclinical study. RSC Adv 9:31078–31091

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gull N, Khan SM, Butt MTZ, Zia S, Khalid S, Islam A, Sajid I, Khan RU, King MW (2019b) Hybrid cross-linked hydrogels as a technology platform for in vitro release of cephradine. Polym Adv Technol 30:2414–2424

    CAS  Google Scholar 

  • Gull N, Khan SM, Butt OM, Islam A, Shah A, Jabeen S, Khan SU, Khan A, Khan RU, Butt MTZ (2020a) Inflammation targeted chitosan-based hydrogel for controlled release of diclofenac sodium. Int J Biol Macromol 162:175–187

    CAS  PubMed  Google Scholar 

  • Gull N, Khan SM, Khalid S, Zia S, Islam A, Sabir A, Sultan M, Hussain F, Khan RU, Butt MTZ (2020b) Designing of biocompatible and biodegradable chitosan based crosslinked hydrogel for in vitro release of encapsulated povidone-iodine: a clinical translation. Int J Biol Macromol 164:4370–4380

    CAS  PubMed  Google Scholar 

  • Handa S, Rakesh D, Vasisht K (2006) Compendium of medicinal and aromatic plants ASIA. ICS UNIDO Asia 2:305

    Google Scholar 

  • Harborne A (1998) Phytochemical methods a guide to modern techniques of plant analysis. Springer, Amsterdam

    Google Scholar 

  • Hosseinzadeh H (2013) Synthesis and swelling properties of a poly (vinyl alcohol)-based superabsorbing hydrogel. Curr Chem Lett 2(3):153–158

    CAS  Google Scholar 

  • Hudzicki J (2009) Kirby-Bauer disk diffusion susceptibility test protocol. Am Soc Microbiol 15:55–63

    Google Scholar 

  • Hyder M, Chen P (2009) Pervaporation dehydration of ethylene glycol with chitosan–poly (vinyl alcohol) blend membranes: Effect of CS–PVA blending ratios. J Membr Sci 340(1–2):171–180

    CAS  Google Scholar 

  • Islam A, Yasin T, Bano I, Riaz M (2012) Controlled release of aspirin from pH-sensitive chitosan/poly (vinyl alcohol) hydrogel. J Appl Polym Sci 124(5):4184–4192

    CAS  Google Scholar 

  • Islam A, Riaz M, Yasin T (2013) Structural and viscoelastic properties of chitosan-based hydrogel and its drug delivery application. Int J Biol Macromol 59:119–124

    CAS  PubMed  Google Scholar 

  • Islam A, Yasin T, Gull N, Khan SM, Munawar MA, Shafiq M, Sabir A, Jamil T (2016) Evaluation of selected properties of biocompatible chitosan/poly(vinyl alcohol) blends. Int J Biol Macromol 82:551–556

    CAS  PubMed  Google Scholar 

  • Jabeen S, Islam A, Ghaffar A, Gull N, Hameed A, Bashir A, Jamil T, Hussain T (2017) Development of a novel pH sensitive silane crosslinked injectable hydrogel for controlled release of neomycin sulfate. Int J Biol Macromol 97:218–227

    CAS  PubMed  Google Scholar 

  • Khan S (2014) In situ gelling drug delivery system: an overview. JIPBS 1:88–91

    Google Scholar 

  • Khodaverdi, Tafahodi M, Ganji F, Abnoos K, Naghizdah H (2012) In vitro insulin release from thermosensitive chitosan hydrogel. AAPS PharmSciTech 13(2):460–466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar MNR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27

    CAS  Google Scholar 

  • Leaves L, Leaves L (2014) Antioxidant activity by DPPH radical scavenging method of ageratum conyzoides. Am J of Ethnomedicine 1(4):244–249

    Google Scholar 

  • Li C, Ren S, Dai Y, Tian F, Wang X, Zhou S, Deng S, Liu Q, Zhao J, Chen X (2014) Efficacy, pharmacokinetics, and biodistribution of thermosensitive chitosan/β-glycerophosphate hydrogel loaded with docetaxel. AAPS PharmSciTech 15(2):417–424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masood U (2021) Cure a cancer by using caspase-3 protein. MAR Microbiology 2:1–3

    Google Scholar 

  • McMillan A, Young H (2007) The treatment of pharyngeal gonorrhoea with a single oral dose of cefixime. Int J STD AIDS 18(4):253–254

    CAS  PubMed  Google Scholar 

  • Muzzarelli RAA (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohyd Polym 77(1):1–9

    CAS  Google Scholar 

  • NISCAIR (2003) The wealth of India a dictionary of Indian raw materials & industrial products first supplement series (raw materials) Vol. 4: JQ. National Institute of Science Communication and Information Resources

  • Oliveira MI, Santos SG, Oliveira MJ, Torres AL, Barbosa MA (2012) Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation. Eur Cell Mater 24(136):133–136

    Google Scholar 

  • Organization WH (2018) Global antimicrobial resistance surveillance system (GLASS): the detection and reporting of colistin resistance. World Health Organization

  • Parida UK, Nayak AK, Binhani BK, Nayak PL (2011) Synthesis and characterization of chitosan-polyvinyl alcohol blended with cloisite 30B for controlled release of the anticancer drug curcumin. J Biomater Nanobiotechnol 2(04):414

    CAS  Google Scholar 

  • Park S-B, Lih E, Park K-S, Joung Y-K, Han D-K (2017) Biopolymer-based functional composites for medical applications. Prog Polym Sci 68:77–105

    CAS  Google Scholar 

  • Paul W, Sharma C (2004) Chitosan and alginate wound dressings: a short review. Trends Biomater Artif Organs 18:18–23

    Google Scholar 

  • Pawar SV, Yadav GD (2014) PVA/chitosan–glutaraldehyde cross-linked nitrile hydratase as reusable biocatalyst for conversion of nitriles to amides. J Mol Catal B Enzym 101:115–121

    CAS  Google Scholar 

  • Peppas NA, Bures P, Leobanung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46

    CAS  PubMed  Google Scholar 

  • Pharmacopoeia B (2009) The department of health, social services and public safety. British Pharmacopoeia Commission Office, London 2:1947–1949

    Google Scholar 

  • Priya DS, Christy HKS, Sankaravadivu S, Packiam CS (2015) Antioxidant activity of the simple ascidian Phallusia nigra of Thoothukudi Coast. Int J Pharm Chem 12:410–412

    Google Scholar 

  • Pulipati S, Babu PS, Naveena U, Parveen SKR, Nausheen SKS, Sai MTN (2017) Determination of total phenolic, tannin, flavonoid contents and evaluation of antioxidant property of Amaranthus tricolor (L). Int J Pharmacogn Phytochem Res 9(6):814–819

    Google Scholar 

  • Qiu K, Netravali AN (2012) Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol. Compos Sci Technol 72(13):1588–1594

    CAS  Google Scholar 

  • Qiu K, Netravali AN (2013) A composting study of membrane-like polyvinyl alcohol based resins and nanocomposites. J Polym Environ 21(3):658–674

    CAS  Google Scholar 

  • Quellet C, Schudel M, Ringgenberg R (2001) Flavors & fragrance delivery systems. CHIMIA Int J Chem 55(5):421–428

    CAS  Google Scholar 

  • Saleem A, Gopal V, Bharathidasan P (2006) Chemical and pharmacological evaluation of karpura shilajit bhasma, an ayurvedic diuretic formulation. Afr J Tradit Complement Altern Med 3(2):27–36

    CAS  Google Scholar 

  • Saxena SK (2004) Polyvinyl alcohol (PVA). Chem Tech Assess 1(3):3–5

    Google Scholar 

  • Senapati S, Mahanta AK, Kumar S, Maiti P (2018) Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther, 16

  • Shehata AN, Aty AAAE, Darwish DA, Wahab WAA, Mostafa FA (2018) Purification, physicochemical and thermodynamic studies of antifungal chitinase with production of bioactive chitosan-oligosaccharide from newly isolated Aspergillus griseoaurantiacus KX010988. Int J Biol Macromol 107:990–999

    CAS  PubMed  Google Scholar 

  • Sravani T, Paarakh PM (2012) Antioxidant activity of Hedychium spicatum Buch.-Ham. rhizomes

  • Stora T, Escher S, Morris A (2001) The physicochemical basis of perfume performance in consumer products. CHIMIA Int J Chem 55(5):406–412

    CAS  Google Scholar 

  • Sun Y, Nan D, Jin H, Qu X (2020) Recent advances of injectable hydrogels for drug delivery and tissue engineering applications. Polym Testing 81:106283

    CAS  Google Scholar 

  • Tan H, Rubin JP, Marra KG (2010) Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for adipose tissue regeneration. Organogenesis 6(3):173–180

    PubMed  PubMed Central  Google Scholar 

  • Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847

    CAS  PubMed  Google Scholar 

  • Wang X, Zhou Z, Guo X, He Q, Hao C, Ge C (2016) Ultrasonic-assisted synthesis of sodium lignosulfonate-grafted poly (acrylic acid-co-poly (vinyl pyrrolidone)) hydrogel for drug delivery. RSC Adv 6(42):35550–35558

    CAS  Google Scholar 

  • Wang Y, Wang J, Yuan Z, Han H, Li T, Li L, Guo X (2017) Chitosan cross-linked poly(acrylic acid) hydrogels: drug release control and mechanism. Colloids Surf, B 152:252–259

    CAS  Google Scholar 

  • Warrier P, Nambiar V, Ramankutty C (1994) Indian medicinal plants: a compendium of 500 species, vol 2. Orient Longman Publishers, Kottakkal, India

    Google Scholar 

  • Williams S (1998) Mechanical testing of a new biomaterial for potential use as a vascular graft and articular cartilage substitute. Georgia Institute of Technology

  • Yang JM, Su WY, Leu TL, Yang MC (2004) Evaluation of chitosan/PVA blended hydrogel membranes. J Membr Sci 236(1):39–51

    CAS  Google Scholar 

  • Zack E (2012) Chemotherapy and biotherapeutic agents for autoimmune diseases. Clin J Oncol Nurs 16:E125–E132

    PubMed  Google Scholar 

  • Zhao L, Mitomo H, Zhai M, Yoshii F, Nagasawa N, Kume T (2003) Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation. Carbohyd Polym 53(4):439–446

    CAS  Google Scholar 

  • Zhou Z, Lin S, Yue T, Lee T-C (2014) Adsorption of food dyes from aqueous solution by glutaraldehyde cross-linked magnetic chitosan nanoparticles. J Food Eng 126:133–141

    CAS  Google Scholar 

  • Zhu Q, Xu S, Wu W, Qi Y, Lin Z, Li Y, Qin Y (2022) Hierarchical hollow zinc oxide nanocomposites derived from morphology-tunable coordination polymers for enhanced solar hydrogen production. Angew Chem Int Ed 61:e202205312

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Kanwal or Atif Islam.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanwal, M., Jabeen, S., Islam, A. et al. Cytocompatible and stimuli-responsive chitosan based carrier with 3-aminopropyl(diethoxy)methylsilane for controlled release of cefixime. Chem. Pap. 77, 5571–5586 (2023). https://doi.org/10.1007/s11696-023-02886-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-023-02886-1

Keywords