[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Evaluation of RGB cube calibration framework and effect of calibration charts on color measurement of mozzarella cheese

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Calibration of color vision system is one of the important factors to ensure measurement accuracy and to minimize error. In the present work, RGB cube calibration method was developed and evaluated. The method suggests a basis of selecting different color shades for calibration and gives insight on development of customized calibration charts. Four types of calibration charts (Macbeth gloss, Macbeth matt, Color cube gloss and Color cube matt) were evaluated and effect on color measurement of mozzarella cheese was studied. CIE L*a*b* color values were determined using commercial color spectrophotometer. The colorimetric values and CIE L*a*b* values of color vision system were further used for regression analysis. Color difference (ΔE) values of less than five were observed for all the four types of calibration charts. ΔE value of Color cube gloss calibration chart was lower than other calibration charts indicating better color measurement accuracy. The calibrated color vision system was successfully used for color measurement of mozzarella cheese.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Wu, D.-W. Sun, Trends Food Sci. Technol. 29, 5–20 (2013)

    Article  CAS  Google Scholar 

  2. V. Briones, J.M. Aguilera, Food Res. Int. 38, 87–94 (2005)

    Article  Google Scholar 

  3. I.R. Donis-González, D.E. Guyer, G.A. Leiva-Valenzuela, J. Burns, J. Food Eng. 115, 407–414 (2013)

    Article  Google Scholar 

  4. I.R. Donis-González, D.E. Guyer, Comp. Elect. Agri. 127, 236–241 (2016)

    Article  Google Scholar 

  5. A. Girolami, F. Napolitano, D. Faraone, A. Braghieri, Meat Sci. 93, 111–118 (2013)

    Article  PubMed  Google Scholar 

  6. K. León, D. Mery, F. Pedreschi, J. León, Food Res. Int. 39, 1084–1091 (2006)

    Article  Google Scholar 

  7. H. Manninen, M. Paakki, A. Hopia, R. Franzén, LWT - Food Sci. Technol. 63, 1184–1190 (2015)

    Article  CAS  Google Scholar 

  8. K.L. Yam, S.E. Papadakis, J. Food Eng. 61, 137–142 (2004)

    Article  Google Scholar 

  9. S. Benalia, S. Cubero, J.M. Prats-Montalbán, B. Bernardi, G. Zimbalatti, J. Blasco, Comp. Electr. Agric. 120, 17–25 (2016)

    Article  Google Scholar 

  10. P. Jackman, D.-W. Sun, G. Elmasry, Meat Sci 91, 402–407 (2012)

    Article  PubMed  Google Scholar 

  11. V. Gökmen, H.Z. Senyuva, B. Dülek, A.E. Cetin, Food Chem 101, 791–798 (2007)

    Article  CAS  Google Scholar 

  12. M.K. Dutta, A. Singh, S. Ghosal, Comp. Electr. Agric. 119, 40–50 (2015)

    Article  Google Scholar 

  13. F. Pedreschi, K. Kaack, K. Granby, Food Res. Int. 39, 40–46 (2006)

    Article  CAS  Google Scholar 

  14. D.P. Cavallo, M. Cefola, B. Pace, A.F. Logrieco, G. Attolico, Comp. Electr. Agric. 140, 303–310 (2017)

    Article  Google Scholar 

  15. M. Chmiel, M. Słowiński, K. Dasiewicz, Food Contr 22, 1424–1427 (2011)

    Article  Google Scholar 

  16. L.H. Stien, A. Kiessling, F. Manne, J. Food Comp. Anal. 20, 73–79 (2007)

    Article  CAS  Google Scholar 

  17. B. Gil, Y.J. Cho, S.H. Yoon, LWT Food Sci. Technol. 37, 657–661 (2004)

    Article  CAS  Google Scholar 

  18. L.N. Smith, M.L. Smith, Image Vision Comp. 23, 887–899 (2005)

    Article  Google Scholar 

  19. M. Kretkowski, Y. Shimodaira, R. Jabłoński, J. Auto. Mobile Robo. Intel. Sys. 3, 213–216 (2009)

    Google Scholar 

  20. H. Wannous, Y. Lucas, S. Treuillet, A. Mansouri, Y. Voisin, J. Electr. Imag. 21(1-), 023015 (2012) -023015–14

    Article  Google Scholar 

  21. P.V. Gehler, C. Rother, A. Blake, T. Minka, T. Sharp, Proc. IEEE Comp. Soc. Conf. Comp. Vision Pattern Recog. (CVPR 2008) (2008)

  22. A. Minagawa, Y. Katsuyama, H. Takebe, Y. Hotta, Int. Conf. Pattern Recog. (ICPR 2012) (2012)

  23. C.S. Mccamy, H. Marcus, J. Davidson, J. App. Photo. Eng. 2, 95–99 (1976)

    Google Scholar 

  24. H. Afshari-Jouybari, A. Farahnaky, J. Food Eng. 106, 170–175 (2011)

    Article  Google Scholar 

  25. N.A. Valous, F. Mendoza, D.W. Sun, P. Allen, Meat Sci 81, 132–141 (2009)

    Article  PubMed  Google Scholar 

  26. D.F. Barbin, S.M. Mastelini, S. Barbon, G.F.C. Campos, A.P.A.C. Barbon, M. Shimokomaki, Biosys. Eng. 144, 85–93 (2016)

    Article  Google Scholar 

  27. D. Pascale, RGB coordinates of the Macbeth ColorChecker. (The BabelColor Company, Montreal, 2006), pp. 1–16

  28. C.A. Acevedo, O. Skurtys, M.E. Young, J. Enrione, F. Pedreschi, F. Osorio, LWT - Food Sci. Technol. 42, 1444–1449 (2009)

    Article  CAS  Google Scholar 

  29. L.M. Agudelo-Laverde, C. Schebor, M.D.P. Buera, LWT Food Sci. Technol. 52, 157–162 (2013)

    Article  CAS  Google Scholar 

  30. S. Cárdenas-Pérez, J. Chanona-Pérez, J.V. Méndez-Méndez, G. Calderón-Domínguez, R. López-Santiago, M.J. Perea-Flores, I. Arzate-Vázquez, Biosys. Eng. 159, 46–58 (2017)

    Article  Google Scholar 

  31. S. Sharifzadeh, L.H. Clemmensen, C. Borggaard, S. Støier, B.K. Ersbøll, Eng. Appl. Art. Intel. 27, 211–227 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charanjiv Singh Saini.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minz, P.S., Saini, C.S. Evaluation of RGB cube calibration framework and effect of calibration charts on color measurement of mozzarella cheese. Food Measure 13, 1537–1546 (2019). https://doi.org/10.1007/s11694-019-00069-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00069-9

Keywords

Navigation