[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Formation of cognitive maps in large-scale environments by sensorimotor integration

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Hippocampus in the mammalian brain supports navigation by building a cognitive map of the environment. However, only a few studies have investigated cognitive maps in large-scale arenas. To reveal the computational mechanisms underlying the formation of cognitive maps in large-scale environments, we propose a neural network model of the entorhinal-hippocampal neural circuit that integrates both spatial and non-spatial information. Spatial information is relayed from the grid units in medial entorhinal cortex (MEC) by integrating multimodal sensory-motor signals. Non-spatial, such as object, information is imparted from the visual units in lateral entorhinal cortex (LEC) by encoding visual scenes through a deep neural network. The synaptic weights from the grid units and the visual units to the place units in the hippocampus are learned by a competitive learning rule. We simulated the model in a large box maze. The place units in the model form irregularly-spaced multiple fields across the environment. When the strength of visual inputs is dominant, the responses of place units become conjunctive and egocentric. These results point to the key role of the hippocampus in balancing spatial and non-spatial information relayed via LEC and MEC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

This work has no associated data.

References

  • Alexander AS, Carstensen LC, Hinman JR, Raudies F, Chapman GW, Hasselmo ME (2020) Egocentric boundary vector tuning of the retrosplenial cortex. Sci Adv 6(8):eaaz2322

    Article  PubMed  PubMed Central  Google Scholar 

  • Banino A, Barry C, Uria B, Blundell C, Lillicrap T, Mirowski P, Pritzel A, Chadwick MJ, Degris T, Modayil J et al (2018) Vector-based navigation using grid-like representations in artificial agents. Nature 557(7705):429–433

    Article  CAS  PubMed  Google Scholar 

  • Brun VH, Solstad T, Kjelstrup KB, Fyhn M, Witter MP, Moser EI, Moser M-B (2008) Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex. Hippocampus 18(12):1200–1212

    Article  PubMed  Google Scholar 

  • Burak Y, Fiete IR (2009) Accurate path integration in continuous attractor network models of grid cells. PLoS Comput Biol 5(2):e1000291

    Article  PubMed  PubMed Central  Google Scholar 

  • Burgess N, Barry C (2007) An oscillatory interference model of grid cell firing. Hippocampus 17(9):801–812

    Article  PubMed  PubMed Central  Google Scholar 

  • Bush D, Barry C, Manson D, Burgess N (2015) Using grid cells for navigation. Neuron 87(3):507–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cash SS, Yuste R (1998) Input summation by cultured pyramidal neurons is linear and position-independent. J Neurosci 18(1):10–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cash SS, Yuste R (1999) Linear summation of excitatory inputs by ca1 pyramidal neurons. Neuron 22(2):383–394

    Article  CAS  PubMed  Google Scholar 

  • Chen G, King JA, Burgess N, O’Keefe J (2013) How vision and movement combine in the hippocampal place code. Proc Natl Acad Sci USA 110(1):378–383

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Frank LM (2011) The structure of networks that produce the transformation from grid cells to place cells. Neuroscience 197:293

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Lam O, Jacobson A, Milford M (2014) Convolutional neural network-based place recognition. In: Proceedings of the 16th Australasian Conference on Robotics and Automation, pp 1–8

  • Davidson TJ, Kloosterman F, Wilson MA (2009) Hippocampal replay of extended experience. Neuron 63(4):497–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Almeida L, Idiart M, Lisman JE (2009) The input-output transformation of the hippocampal granule cells: from grid cells to place fields. J Neurosci 29(23):7504–7512

    Article  PubMed  PubMed Central  Google Scholar 

  • Eliav T, Maimon SR, Aljadeff J, Tsodyks M, Ginosar G, Las L, Ulanovsky N (2021) Multiscale representation of very large environments in the hippocampus of flying bats. Science 372(6545):eabg4020

    Article  CAS  PubMed  Google Scholar 

  • Feigenbaum JD, Rolls ET (1991) Allocentric and egocentric spatial information processing in the hippocampal formation of the behaving primate. Psychobiology 19(1):21–40

    Article  Google Scholar 

  • Fenton AA, Kao HY, Neymotin SA, Olypher A, Vayntrub Y, Lytton WW, Ludvig N (2008) Unmasking the ca1 ensemble place code by exposures to small and large environments: more place cells and multiple, irregularly arranged, and expanded place fields in the larger space. J Neurosci 28(44):11250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco L, Rolls ET, Aggelopoulos NC, Jerez JM (2007) Neuronal selectivity, population sparseness, and ergodicity in the inferior temporal visual cortex. Biol Cybern 96(6):547–560

    Article  PubMed  Google Scholar 

  • Franzius M, Vollgraf R, Wiskott L (2007) From grids to places. J Comput Neurosci 22(3):297–299

    Article  CAS  PubMed  Google Scholar 

  • Fuhs MC, Touretzky DS (2006) A spin glass model of path integration in rat medial entorhinal cortex. J Neurosci 26(16):4266–4276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fyhn M, Molden S, Witter MP, Moser EI, Moser M-B (2004) Spatial representation in the entorhinal cortex. Science 305(5688):1258–1264

    Article  CAS  PubMed  Google Scholar 

  • Gagliardo A, Ioalé P, Bingman VP (1999) Homing in pigeons: the role of the hippocampal formation in the representation of landmarks used for navigation. J Neurosci 19(1):311–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasparini S, Magee JC (2006) State-dependent dendritic computation in hippocampal ca1 pyramidal neurons. J Neurosci 26(7):2088–2100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golledge RG (2003) Human wayfinding and cognitive maps. In: Rockman M, Steele J (eds) Flow cytometry protocols. Routledge, London, pp 25–43

    Google Scholar 

  • Gorchetchnikov A, Grossberg S (2007) Space, time and learning in the hippocampus: how fine spatial and temporal scales are expanded into population codes for behavioral control. Neural Netw 20(2):182–193

    Article  PubMed  Google Scholar 

  • Grieves RM, Jedidi-Ayoub S, Mishchanchuk K, Liu A, Renaudineau S, Jeffery KJ (2020) The place-cell representation of volumetric space in rats. Nat Commun 11(1):789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guazzelli A, Bota M, Arbib MA (2001) Competitive Hebbian learning and the hippocampal place cell system: modeling the interaction of visual and path integration cues. Hippocampus 11(3):216–239

    Article  CAS  PubMed  Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052):801

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann S, Beetz MJ, Stöckl A, Mesce KA (2023) Naturalistic neuroscience-towards a full cycle from lab to field. Front Neural Circ 17:1251771

    Article  Google Scholar 

  • Kjelstrup KB, Solstad T, Brun VH, Hafting T, Leutgeb S, Witter MP, Moser EI, Moser M (2008) Finite scale of spatial representation in the hippocampus. Science 321(5885):140–143

    Article  CAS  PubMed  Google Scholar 

  • Knierim JJ, Kudrimoti HS, McNaughton BL (1995) Place cells, head direction cells, and the learning of landmark stability. J Neurosci 15(3):1648–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kringelbach ML, Perl YS, Tagliazucchi E, Deco G (2023) Toward naturalistic neuroscience: mechanisms underlying the flattening of brain hierarchy in movie-watching compared to rest and task. Sci Adv 9(2):eade6049

    Article  PubMed  PubMed Central  Google Scholar 

  • Kropff E, Treves A (2008) The emergence of grid cells: Intelligent design or just adaptation? Hippocampus 18(12):1256–1269

    Article  PubMed  Google Scholar 

  • Leutgeb JK, Leutgeb S, Moser MB, Moser EI (2007) Pattern separation in the dentate gyrus and ca3 of the hippocampus. Science 315(5814):961

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Si B, Lin Y (2015) Self-organization of hippocampal representations in large environments. In: International Joint Conference on Neural Networks (IJCNN) 2015:1–6

  • Lu L, Leutgeb JK, Tsao A, Henriksen EJ, Leutgeb S, Barnes CA, Witter MP, Moser M-B, Moser EI (2013) Impaired hippocampal rate coding after lesions of the lateral entorhinal cortex. Nat Neurosci 16(8):1085–1093

    Article  CAS  PubMed  Google Scholar 

  • Malone TJ, Tien N-W, Ma Y, Cui L, Lyu S, Wang G, Nguyen D, Zhang K, Myroshnychenko MV, Tyan J, Gordon JA, Kupferschmidt DA, Gu Y (2024) A consistent map in the medial entorhinal cortex supports spatial memory. Nat Commun 15(1):1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markus EJ, Barnes CA, Mcnaughton BL, Gladden VL, Skaggs WE (1994) Spatial information content and reliability of hippocampal ca1 neurons: effects of visual input. Hippocampus 4(4):410–421

    Article  CAS  PubMed  Google Scholar 

  • McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser M-B (2006) Path integration and the neural basis of the cognitive map. Nat Rev Neurosci 7(8):663–678

    Article  CAS  PubMed  Google Scholar 

  • Mizumori SJ, Ragozzino K, Cooper B, Leutgeb S (1999) Hippocampal representational organization and spatial context. Hippocampus 9(4):444–451

    Article  CAS  PubMed  Google Scholar 

  • Molter C, Yamaguchi Y (2008) Entorhinal theta phase precession sculpts dentate gyrus place fields. Hippocampus 18(9):919–930

    Article  PubMed  Google Scholar 

  • Muller RU, Kubie JL (1987) The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J Neurosci 7(7):1951–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima N, Kamijo T, Hayakawa H, Sugisaki E, Aihara T (2024) Modification of temporal pattern sensitivity for inputs from medial entorhinal cortex by lateral inputs in hippocampal granule cells. Cogn Neurodyn 18(3):1047–1059

    Article  PubMed  Google Scholar 

  • Norman G, Eacott MJ (2005) Dissociable effects of lesions to the perirhinal cortex and the postrhinal cortex on memory for context and objects in rats. Behav Neurosci 119(2):557–566

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map preliminary evidence from unit activity in the freely-moving rat. Brain Res 34(1):171–175

    Article  PubMed  Google Scholar 

  • Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Curr Opin Neurobiol 14(4):481–487

    Article  CAS  PubMed  Google Scholar 

  • Park E, Dvorak D, Fenton AA (2011) Ensemble place codes in hippocampus: Ca1, ca3, and dentate gyrus place cells have multiple place fields in large environments. PLoS ONE 6(7):e22349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quirk GJ, Muller RU, Kubie JL (1990) The firing of hippocampal place cells in the dark depends on the rat’s recent experience. J Neurosci 10(6):2008–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renn-costa C, Lisman JE, Verschure PF (2010) The mechanism of rate remapping in the dentate gyrus. Neuron 68(6):1051–8

    Article  Google Scholar 

  • Rich PD, Liaw HP, Lee AK (2014) Place cells large environments reveal the statistical structure governing hippocampal representations. Science 345(6198):814–817

    Article  CAS  PubMed  Google Scholar 

  • Robinson L, Rolls ET (2015) Invariant visual object recognition: biologically plausible approaches. Biol Cybern 109(4):505–535

    Article  PubMed  PubMed Central  Google Scholar 

  • Rolls ET, Stringer SM, Elliot T (2006) Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning. Netw: Comput Neural Syst 17(4):447–465

    Article  Google Scholar 

  • Rolls ET (2007) Memory, attention, and decision-making: a unifying computational neuroscience approach. Oxford University Press, Ch. The hippocampus and memory, pp 37–112

  • Rolls ET (2012) Invariant visual object and face recognition: neural and computational bases, and a model, visnet. Front Comput Neurosci 6:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Rolls ET, Treves A (1998) Neural networks and brain function. Oxford University Press, Oxford, UK

    Google Scholar 

  • Rolls ET, Treves A (2011) The neuronal encoding of information in the brain. Prog Neurobiol 95(3):448–490

    Article  PubMed  Google Scholar 

  • Samsonovich AV, Mcnaughton BL (1997) Path integration and cognitive mapping in a continuous attractor neural network model. J Neurosci 17(15):5900–5920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser M, Moser EI (2006) Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312(5774):758–762

    Article  CAS  PubMed  Google Scholar 

  • Save E, Cressant A, Thinusblanc C, Poucet B (1998) Spatial firing of hippocampal place cells in blind rats. J Neurosci 18(5):1818–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savelli F, Knierim JJ (2010) Hebbian analysis of the transformation of medial entorhinal grid-cell inputs to hippocampal place fields. J Neurophysiol 103(6):3167–3183

    Article  PubMed  PubMed Central  Google Scholar 

  • Si B, Treves A (2009) The role of competitive learning in the generation of dg fields from ec inputs. Cogn Neurodyn 3(2):177–87

    Article  PubMed  PubMed Central  Google Scholar 

  • Si B, Treves A (2013) A model for the differentiation between grid and conjunctive units in medial entorhinal cortex. Hippocampus 23(12):1410–1424

    Article  PubMed  Google Scholar 

  • Si B, Kropff E, Treves A (2012) Grid alignment in entorhinal cortex. Biol Cybern 106(8–9):483–506

    Article  PubMed  Google Scholar 

  • Si B, Romani S, Tsodyks M (2014) Continuous attractor network model for conjunctive position-by-velocity tuning of grid cells. PLoS Comput Biol 10(4):e1003558

    Article  PubMed  PubMed Central  Google Scholar 

  • Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations (ICLR 2015), pp 1–4

  • Solstad T, Moser EI, Einevoll GT (2006) From grid cells to place cells: a mathematical model. Hippocampus 16(12):1026–1031

    Article  PubMed  Google Scholar 

  • Sonkusare S, Breakspear M, Guo C (2019) Naturalistic stimuli in neuroscience: critically acclaimed. Trends Cogn Sci 23(8):699–714

    Article  PubMed  Google Scholar 

  • Stensola H, Stensola T, Solstad T, Froland K, Moser M-B, Moser EI (2012) The entorhinal grid map is discretized. Nature 492(7427):72–78

    Article  CAS  PubMed  Google Scholar 

  • Suzuki WA, Miller EK, Desimone R (1997) Object and place memory in the macaque entorhinal cortex. J Neurophysiol 78(2):1062–1081

    Article  CAS  PubMed  Google Scholar 

  • Touretzky DS, Redish AD (1996) Theory of rodent navigation based on interacting representations of space. Hippocampus 6(3):247–270

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Chen X, Lee H, Deshmukh SS, Yoganarasimha D, Savelli F, Knierim JJ (2018) Egocentric coding of external items in the lateral entorhinal cortex. Science 362(6417):945–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhang M, Li M, Cui H, Chen X (2024) Development of a humanoid robot control system based on ar-bci and slam navigation. Cognit Neurodyn 1–14

  • Wilson MA, McNaughton BL (1993) Dynamics of the hippocampal ensemble code for space. Science 261(5124):1055–1058

    Article  CAS  PubMed  Google Scholar 

  • Yartsev MM, Ulanovsky N (2013) Representation of three-dimensional space in the hippocampus of flying bats. Science 340(6130):367–372

    Article  CAS  PubMed  Google Scholar 

  • Yoganarasimha D, Rao G, Knierim JJ (2011) Lateral entorhinal neurons are not spatially selective in cue-rich environments. Hippocampus 21(12):1363–1374

    Article  CAS  PubMed  Google Scholar 

  • Zeng T, Si B (2021) A brain-inspired compact cognitive mapping system. Cogn Neurodyn 15(1):91–101

    Article  PubMed  Google Scholar 

  • Zhang Z, Tang F, Li Y, Feng X (2024) A spatial transformation-based can model for information integration within grid cell modules. Cognit Neurodyn

  • Zhao D, Zhang Z, Lu H, Cheng S, Si B, Feng X (2022) Learning cognitive map representations for navigation by sensory-motor integration. IEEE Trans Cybern 52(1):508–521

    Article  PubMed  Google Scholar 

  • Zhu XO, Brown MW, Aggleton JP (2010) Neuronal signalling of information important to visual recognition memory in rat rhinal and neighbouring cortices. Eur J Neurosci 7(4):753–765

    Article  Google Scholar 

  • Zhu N, Zhang Y, Xiao X, Wang Y, Yang J, Colgin LL, Zheng C (2023) Hippocampal oscillatory dynamics in freely behaving rats during exploration of social and non-social stimuli. Cogn Neurodyn 17(2):411–429

    Article  PubMed  Google Scholar 

Download references

Funding

This work is supported by STI2030-Major Projects 2022ZD0205005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bailu Si.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Si, B. Formation of cognitive maps in large-scale environments by sensorimotor integration. Cogn Neurodyn 19, 19 (2025). https://doi.org/10.1007/s11571-024-10200-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11571-024-10200-2

Keywords