[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

3D CT to 2D X-ray image registration for improved visualization of tibial vessels in endovascular procedures

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

During endovascular revascularization interventions for peripheral arterial disease, the standard modality of X-ray fluoroscopy (XRF) used for image guidance is limited in visualizing distal segments of infrapopliteal vessels. To enhance visualization of arteries, an image registration technique was developed to align pre-acquired computed tomography (CT) angiography images and to create fusion images highlighting arteries of interest.

Methods

X-ray image metadata capturing the position of the X-ray gantry initializes a multiscale iterative optimization process, which uses a local-variance masked normalized cross-correlation loss to rigidly align a digitally reconstructed radiograph (DRR) of the CT dataset with the target X-ray, using the edges of the fibula and tibia as the basis for alignment. A precomputed library of DRRs is used to improve run-time, and the six-degree-of-freedom optimization problem of rigid registration is divided into three smaller sub-problems to improve convergence. The method was tested on a dataset of paired cone-beam CT (CBCT) and XRF images of ex vivo limbs, and registration accuracy at the midline of the artery was evaluated.

Results

On a dataset of CBCTs from 4 different limbs and a total of 17 XRF images, successful registration was achieved in 13 cases, with the remainder suffering from input image quality issues. The method produced average misalignments of less than 1 mm in horizontal projection distance along the artery midline, with an average run-time of 16 s.

Conclusion

The sub-mm spatial accuracy of artery overlays is sufficient for the clinical use case of identifying guidewire deviations from the path of the artery, for early detection of guidewire-induced perforations. The semiautomatic workflow and average run-time of the algorithm make it feasible for integration into clinical workflows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data and code availability

Code will be made available via a public repository at time of publishing. The evaluation dataset cannot be shared, as per the institutional data sharing agreement.

References

  1. Campia U, Gerhard-Herman M, Piazza G, Goldhaber SZ (2019) Peripheral artery disease: past, present, and future. Am J Med 132:1133–1141. https://doi.org/10.1016/j.amjmed.2019.04.043

    Article  PubMed  Google Scholar 

  2. Criqui MH, Matsushita K, Aboyans V, Hess CN, Hicks CW, Kwan TW, McDermott MM, Misra S, Ujueta F (2021) Lower extremity peripheral artery disease: contemporary epidemiology, management gaps, and future directions: a scientific statement from the American heart association. Circulation 144:e171–e191. https://doi.org/10.1161/CIR.0000000000001005

    Article  PubMed  PubMed Central  Google Scholar 

  3. Conte MS, Bradbury AW, Kolh P, White JV, Dick F, Fitridge R, Mills JL, Ricco J-B, Suresh KR, Murad MH, Aboyans V, Aksoy M, Alexandrescu V-A, Armstrong D, Azuma N, Belch J, Bergoeing M, Bjorck M, Chakfé N, Cheng S, Dawson J, Debus ES, Dueck A, Duval S, Eckstein HH, Ferraresi R, Gambhir R, Gargiulo M, Geraghty P, Goode S, Gray B, Guo W, Gupta PC, Hinchliffe R, Jetty P, Komori K, Lavery L, Liang W, Lookstein R, Menard M, Misra S, Miyata T, Moneta G, Prado JAM, Munoz A, Paolini JE, Patel M, Pomposelli F, Powell R, Robless P, Rogers L, Schanzer A, Schneider P, Taylor S, Vega De Ceniga M, Veller M, Vermassen F, Wang J, Wang S (2019) Global vascular guidelines on the management of chronic limb-threatening ischemia. J Vasc Surg 69:3S-125S. https://doi.org/10.1016/j.jvs.2019.02.016

    Article  PubMed  Google Scholar 

  4. Abu Dabrh AM, Steffen MW, Undavalli C, Asi N, Wang Z, Elamin MB, Conte MS, Murad MH (2015) The natural history of untreated severe or critical limb ischemia. J Vasc Surg 62:1642-1651.e3. https://doi.org/10.1016/j.jvs.2015.07.065

    Article  PubMed  Google Scholar 

  5. Abramson BL, Al-Omran M, Anand SS, Albalawi Z, Coutinho T, de Mestral C, Dubois L, Gill HL, Greco E, Guzman R, Herman C, Hussain MA, Huckell VF, Jetty P, Kaplovitch E, Karlstedt E, Kayssi A, Lindsay T, Mancini GBJ, McClure G, McMurtry MS, Mir H, Nagpal S, Nault P, Nguyen T, Petrasek P, Rannelli L, Roberts DJ, Roussin A, Saw J, Srivaratharajah K, Stone J, Szalay D, Wan D, Cox H, Verma S, Virani S (2022) Canadian cardiovascular society 2022 guidelines for peripheral arterial disease. Can J Cardiol 38:560–587. https://doi.org/10.1016/j.cjca.2022.02.029

    Article  PubMed  Google Scholar 

  6. Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, Fleisher LA, Fowkes FGR, Hamburg NM, Kinlay S, Lookstein R, Misra S, Mureebe L, Olin JW, Patel RAG, Regensteiner JG, Schanzer A, Shishehbor MH, Stewart KJ, Treat-Jacobson D, Walsh ME (2017) 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the American college of cardiology/American heart association task force on clinical practice guidelines. Circulation 135:e686–e725. https://doi.org/10.1161/CIR.0000000000000470

    Article  PubMed  Google Scholar 

  7. Posa A, Tanzilli A, Barbieri P, Steri L, Arbia F, Mazza G, Longo V, Iezzi R (2022) Digital subtraction angiography (DSA) technical and diagnostic aspects in the study of lower limb arteries. Radiation 2:376–386. https://doi.org/10.3390/radiation2040028

    Article  Google Scholar 

  8. Campos LA, Schenning RC (2020) Digital subtraction angiography. In: Kramer CM (ed) Imaging in peripheral arterial disease: clinical and research applications. Springer, Cham, pp 93–121

    Chapter  Google Scholar 

  9. Kokkinidis DG, Armstrong EJ (2020) Current developments in endovascular therapy of peripheral vascular disease. J Thorac Dis 12:1681–1694. https://doi.org/10.21037/jtd.2019.12.130

    Article  PubMed  PubMed Central  Google Scholar 

  10. Armstrong EJ, Bishu K, Waldo SW (2016) Endovascular treatment of infrapopliteal peripheral artery disease. Curr Cardiol Rep 18:34. https://doi.org/10.1007/s11886-016-0708-y

    Article  PubMed  Google Scholar 

  11. Beckman JA, Schneider PA, Conte MS (2021) Advances in revascularization for peripheral artery disease: revascularization in PAD. Circ Res 128:1885–1912. https://doi.org/10.1161/CIRCRESAHA.121.318261

    Article  PubMed  Google Scholar 

  12. Guez D, Hansberry DR, Gonsalves CF, Eschelman DJ, Parker L, Rao VM, Levin DC (2020) Recent trends in endovascular and surgical treatment of peripheral arterial disease in the medicare population. Am J Roentgenol 214:962–966. https://doi.org/10.2214/AJR.19.21967

    Article  Google Scholar 

  13. Ward C, Gamberdella J, Mena-Hurtado C (2015) Endovascular treatment of below the knee arteries. In: Lanzer P (ed) Panvascular medicine. Springer, Berlin, pp 3195–3203

    Chapter  Google Scholar 

  14. Josephs SC, Rowley HA, Rubin GD (2008) Atherosclerotic peripheral vascular disease symposium II. Circulation 118:2837–2844. https://doi.org/10.1161/CIRCULATIONAHA.108.191173

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fleischmann D, Hallett RL, Rubin GD (2006) CT angiography of peripheral arterial disease. J Vasc Interv Radiol 17:3–26. https://doi.org/10.1097/01.RVI.0000191361.02857.DE

    Article  PubMed  Google Scholar 

  16. ESC Scientific Document Group, Aboyans V, Ricco J-B, Bartelink M-LEL, Björck M, Brodmann M, Cohnert T, Collet J-P, Czerny M, De Carlo M, Debus S, Espinola-Klein C, Kahan T, Kownator S, Mazzolai L, Naylor AR, Roffi M, Röther J, Sprynger M, Tendera M, Tepe G, Venermo M, Vlachopoulos C, Desormais I (2018) 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European society for vascular surgery (ESVS): document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries endorsed by: the European stroke organization (ESO) the task force for the diagnosis and treatment of peripheral arterial diseases of the European society of cardiology (ESC) and of the European society for vascular surgery (ESVS). Eur Heart J 39:763–816. https://doi.org/10.1093/eurheartj/ehx095

    Article  Google Scholar 

  17. Tomazevic D, Likar B, Slivnik T, Pernus F (2003) 3-D/2-D registration of CT and MR to X-ray images. IEEE Trans Med Imaging 22:1407–1416. https://doi.org/10.1109/TMI.2003.819277

    Article  PubMed  Google Scholar 

  18. Grimm M, Esteban J, Unberath M, Navab N (2021) Pose-dependent weights and domain randomization for fully automatic X-ray to CT registration. IEEE Trans Med Imaging 40:2221–2232. https://doi.org/10.1109/TMI.2021.3073815

    Article  PubMed  Google Scholar 

  19. Meng C, Wang Q, Guan S, Xie Y (2018) Weighted local mutual information for 2D–3D registration in vascular interventions. In: Bai X, Hancock ER, Ho TK, Wilson RC, Biggio B, Robles-Kelly A (eds) Structural, syntactic, and statistical pattern recognition. Springer, Cham, pp 376–385

    Chapter  Google Scholar 

  20. Duménil A, Kaladji A, Castro M, Göksu C, Lucas A, Haigron P (2016) A versatile intensity-based 3D/2D rigid registration compatible with mobile C-arm for endovascular treatment of abdominal aortic aneurysm. Int J Comput Assist Radiol Surg 11:1713–1729. https://doi.org/10.1007/s11548-016-1416-1

    Article  PubMed  Google Scholar 

  21. Lalys F, Favre K, Villena A, Durrmann V, Colleaux M, Lucas A, Kaladji A (2018) A hybrid image fusion system for endovascular interventions of peripheral artery disease. Int J Comput Assist Radiol Surg 13:997–1007. https://doi.org/10.1007/s11548-018-1731-9

    Article  PubMed  Google Scholar 

  22. Miao S, Wang ZJ, Liao R (2016) A CNN regression approach for real-time 2D/3D registration. IEEE Trans Med Imaging 35:1352–1363. https://doi.org/10.1109/TMI.2016.2521800

    Article  Google Scholar 

  23. Geng H, Xiao D, Yang S, Fan J, Fu T, Lin Y, Bai Y, Ai D, Song H, Wang Y, Duan F, Yang J (2023) CT2X-IRA: CT to X-ray image registration agent using domain-cross multi-scale-stride deep reinforcement learning. Phys Med Biol 68:175024. https://doi.org/10.1088/1361-6560/acede5

    Article  Google Scholar 

  24. Markelj P, Tomaževič D, Likar B, Pernuš F (2012) A review of 3D/2D registration methods for image-guided interventions. Med Image Anal 16:642–661. https://doi.org/10.1016/j.media.2010.03.005

    Article  PubMed  Google Scholar 

  25. Miao S, Tuysuzoglu A, Wang ZJ, Liao R (2016) Real-time 6DoF pose recovery from X-ray images using library-based DRR and hybrid optimization. Int J Comput Assist Radiol Surg 11:1211–1220. https://doi.org/10.1007/s11548-016-1387-2

    Article  PubMed  Google Scholar 

  26. LaRose DA (2001) Iterative X-ray/CT registration using accelerated volume rendering. PhD Thesis, CMU-RI-TR-01-10, Electrical and Computer Engineering, Carnegie Mellon University

  27. Powell M (2009) The BOBYQA algorithm for bound constrained optimization without derivatives. University of Cambridge

  28. Cartis C, Fiala J, Marteau B, Roberts L (2019) Improving the flexibility and robustness of model-based derivative-free optimization solvers. ACM Trans Math Softw 45:1–41. https://doi.org/10.1145/3338517

    Article  Google Scholar 

  29. Cartis C, Roberts L, Sheridan-Methven O (2022) Escaping local minima with local derivative-free methods: a numerical investigation. Optimization 71:2343–2373. https://doi.org/10.1080/02331934.2021.1883015

    Article  Google Scholar 

  30. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341. https://doi.org/10.1016/j.mri.2012.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  31. Unberath M, Zaech J-N, Lee SC, Bier B, Fotouhi J, Armand M, Navab N (2018) DeepDRR – a catalyst for machine learning in fluoroscopy-guided procedures. In: Frangi AF, Schnabel JA, Davatzikos C, Alberola-López C, Fichtinger G (eds) Medical image computing and computer assisted intervention – MICCAI 2018. Springer, Cham, pp 98–106

    Chapter  Google Scholar 

  32. van de Kraats EB, Penney GP, Tomazevic D, van Walsum T, Niessen WJ (2005) Standardized evaluation methodology for 2-D-3-D registration. IEEE Trans Med Imaging 24:1177–1189. https://doi.org/10.1109/TMI.2005.853240

    Article  PubMed  Google Scholar 

  33. Kumar A, Valakkada J, Ayyappan A, Kannath S (2022) Management of acute complications during endovascular procedures in peripheral arterial disease: a review. J Clin Interv Radiol ISVIR. https://doi.org/10.1055/s-0042-1760246

    Article  Google Scholar 

  34. Lorbeer R, Grotz A, Dörr M, Völzke H, Lieb W, Kühn J-P, Mensel B (2018) Reference values of vessel diameters, stenosis prevalence, and arterial variations of the lower limb arteries in a male population sample using contrast-enhanced MR angiography. PLoS ONE 13:e0197559. https://doi.org/10.1371/journal.pone.0197559

    Article  PubMed  PubMed Central  Google Scholar 

  35. Telang AV, Lone M, Natarajan M (2016) A study of the internal diameter of popliteal artery, anterior and posterior tibial arteries in cadavers. Indian J Clin Anat Physiol 3:287

    Article  Google Scholar 

Download references

Funding

MS, JHP, CDS, and GAW receive research support from the Canadian Institutes for Health Research (Grant Number: PJT156041), and the Vector Scholarship in Artificial Intelligence, provided through the Vector Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moujan Saderi.

Ethics declarations

Conflict of interest

The authors (MS, JHP, CDS, JC, TLR, GAW) have no competing interests to declare that are relevant to the content of this article.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki, with approval under protocol number PRO00025278 by the Institutional Review Board at Houston Methodist.

Consent to participate

Written informed consent was obtained from all participants included in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saderi, M., Patel, J.H., Sheagren, C.D. et al. 3D CT to 2D X-ray image registration for improved visualization of tibial vessels in endovascular procedures. Int J CARS (2025). https://doi.org/10.1007/s11548-024-03302-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11548-024-03302-z

Keywords

Navigation