[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Advertisement

Paroxetine promotes longevity via ser-7-dop-4-IIS axis in Caenorhabditis elegans

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Paroxetine, a selective serotonin reuptake inhibitor, is widely used in the clinical treatment of depression. While several antidepressants show promise as geroprotectors, the role of paroxetine in aging remains unclear. In this study, we evaluated the lifespan extension effect of paroxetine in Caenorhabditis elegans (C. elegans) and elucidated the underlying mechanisms. The results showed that paroxetine can prolong lifespan concomitant extension of healthspan as indicated by increasing mobility and reducing lipofuscin accumulation, as well as confer protection to nematodes against different abiotic stresses. Paroxetine upregulated ser-7 expression and downregulated dop-4 expression. dop-4 RNA interference (RNAi) mimicked the beneficial effect of paroxetine on lifespan. Conversely, ser-7 RNAi abolished paroxetine-induced lifespan extension and the expression changes of dop-4 and genes related to insulin/insulin-like growth factor 1 signaling (IIS). Moreover, paroxetine exhibited a comparable lifespan extension effect to that observed in daf-2 or age-1 mutants; however, this effect was abolished in daf-16 mutant. Taken together, these results suggest that paroxetine promotes health and longevity in C. elegans through the ser-7-dop-4-IIS pathway, underscoring its potential as a geroprotector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Cai Y, Song W, Li J, et al. The landscape of aging. Sci China Life Sci. 2022;65:2354–454. https://doi.org/10.1007/s11427-022-2161-3.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lopez-Otin C, Blasco MA, Partridge L, et al. Hallmarks of aging: An expanding universe. Cell. 2023;186:243–78. https://doi.org/10.1016/j.cell.2022.11.001.

    Article  CAS  PubMed  Google Scholar 

  3. Campisi J, Kapahi P, Lithgow GJ, et al. From discoveries in ageing research to therapeutics for healthy ageing. Nature. 2019;571:183–92. https://doi.org/10.1038/s41586-019-1365-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Partridge L, Fuentealba M, Kennedy BK. The quest to slow ageing through drug discovery. Nat Rev Drug Discov. 2020;19:513–32. https://doi.org/10.1038/s41573-020-0067-7.

    Article  CAS  PubMed  Google Scholar 

  5. Moskalev A, Chernyagina E, Tsvetkov V, et al. Developing criteria for evaluation of geroprotectors as a key stage toward translation to the clinic. Aging Cell. 2016;15:407–15. https://doi.org/10.1111/acel.12463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carretero M, Gomez-Amaro RL, Petrascheck M. Pharmacological classes that extend lifespan of Caenorhabditis elegans. Front Genet. 2015;6:77. https://doi.org/10.3389/fgene.2015.00077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Piskovatska V, Strilbytska O, Koliada A, et al. Health Benefits of Anti-aging Drugs. Subcell Biochem. 2019;91:339–92. https://doi.org/10.1007/978-981-13-3681-2_13.

    Article  CAS  PubMed  Google Scholar 

  8. Harmer CJ, Duman RS, Cowen PJ. How do antidepressants work? New perspectives for refining future treatment approaches. Lancet Psychiatry. 2017;4:409–18. https://doi.org/10.1016/S2215-0366(17)30015-9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fries GR, Saldana VA, Finnstein J, et al. Molecular pathways of major depressive disorder converge on the synapse. Mol Psychiatry. 2023;28:284–97. https://doi.org/10.1038/s41380-022-01806-1.

    Article  CAS  PubMed  Google Scholar 

  10. Nakaso K, Nakamura C, Sato H, et al. Novel cytoprotective mechanism of anti-parkinsonian drug deprenyl: PI3K and Nrf2-derived induction of antioxidative proteins. Biochem Biophys Res Commun. 2006;339:915–22. https://doi.org/10.1016/j.bbrc.2005.11.095.

    Article  CAS  PubMed  Google Scholar 

  11. Stoll S, Hafner U, Kranzlin B, et al. Chronic treatment of Syrian hamsters with low-dose selegiline increases life span in females but not males. Neurobiol Aging. 1997;18:205–11. https://doi.org/10.1016/s0197-4580(97)00009-2.

    Article  CAS  PubMed  Google Scholar 

  12. Petrascheck M, Ye X, Buck LB. A high-throughput screen for chemicals that increase the lifespan of Caenorhabditis elegans. Ann N Y Acad Sci. 2009;1170:698–701. https://doi.org/10.1111/j.1749-6632.2009.04377.x.

    Article  PubMed  Google Scholar 

  13. Petrascheck M, Ye X, Buck LB. An antidepressant that extends lifespan in adult Caenorhabditis elegans. Nature. 2007;450:553–6. https://doi.org/10.1038/nature05991.

    Article  CAS  PubMed  Google Scholar 

  14. Rangaraju S, Solis GM, Thompson RC, et al. Suppression of transcriptional drift extends C. elegans lifespan by postponing the onset of mortality. Elife. 2015;4:e08833. https://doi.org/10.7554/eLife.08833.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cipriani A, Furukawa TA, Salanti G, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet. 2018;391:1357–66. https://doi.org/10.1016/S0140-6736(17)32802-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou C, Zhou Y, Liang Y, et al. Fluoxetine Promotes Longevity via Reactive Oxygen Species in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci. 2024;79:glad220.

    Article  PubMed  Google Scholar 

  17. Kamijima K, Aoki M. Effectiveness of paroxetine in the treatment of obsessive-compulsive disorders. Expert Rev Neurother. 2006;6:945–56. https://doi.org/10.1586/14737175.6.7.945.

    Article  CAS  PubMed  Google Scholar 

  18. Wang T, Zhang H, Han Y, et al. Reversing T Cell Dysfunction to Boost Glioblastoma Immunotherapy by Paroxetine-Mediated GRK2 Inhibition and Blockade of Multiple Checkpoints through Biomimetic Nanoparticles. Adv Sci (Weinh). 2023;10:e2204961. https://doi.org/10.1002/advs.202204961.

    Article  CAS  PubMed  Google Scholar 

  19. Carlson EL, Karuppagounder V, Pinamont WJ, et al. Paroxetine-mediated GRK2 inhibition is a disease-modifying treatment for osteoarthritis. Sci Transl Med. 2021;13:8491. https://doi.org/10.1126/scitranslmed.aau8491.

    Article  CAS  Google Scholar 

  20. Zhao K, Nie H, Tang Z, et al. Paroxetine protects against bleomycin-induced pulmonary fibrosis by blocking GRK2/Smad3 pathway. Aging (Albany NY). 2023;15:10524–39.

    Article  CAS  PubMed  Google Scholar 

  21. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77:71–94. https://doi.org/10.1093/genetics/77.1.71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meneely PM, Dahlberg CL, Rose JK. Working with Worms: Caenorhabditis elegans as a Model Organism. Current Protocols Essential Laboratory Techniques. 2019;19:e35. https://doi.org/10.1002/cpet.35.

    Article  Google Scholar 

  23. Timmons L, Fire A. Specific interference by ingested dsRNA. Nature. 1998;395:854. https://doi.org/10.1038/27579.

    Article  CAS  PubMed  Google Scholar 

  24. F. He, 2011 RNA Interference (RNAi) by Bacterial Feeding. Bio-Protocol 1

  25. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. https://doi.org/10.1093/nar/29.9.e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22. https://doi.org/10.1373/clinchem.2008.112797.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou KI, Pincus Z, Slack FJ. Longevity and stress in Caenorhabditis elegans. Aging (Albany NY). 2011;3:733–53.

    Article  PubMed  Google Scholar 

  28. Jiang Y, Gaur U, Cao Z, et al. Dopamine D1- and D2-like receptors oppositely regulate lifespan via a dietary restriction mechanism in Caenorhabditis elegans. BMC Biol. 2022;20:71. https://doi.org/10.1186/s12915-022-01272-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang B, Gong J, Zhang W, et al. Brain-gut communications via distinct neuroendocrine signals bidirectionally regulate longevity in C elegans. Genes Dev. 2018;32:258–70. https://doi.org/10.1101/gad.309625.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guarente L, Kenyon C. Genetic pathways that regulate ageing in model organisms. Nature. 2000;408:255–62. https://doi.org/10.1038/35041700.

    Article  CAS  PubMed  Google Scholar 

  31. Cabreiro F, Au C, Leung KY, et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell. 2013;153:228–39. https://doi.org/10.1016/j.cell.2013.02.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wan QL, Zheng SQ, Wu GS, et al. Aspirin extends the lifespan of Caenorhabditis elegans via AMPK and DAF-16/FOXO in dietary restriction pathway. Exp Gerontol. 2013;48:499–506. https://doi.org/10.1016/j.exger.2013.02.020.

    Article  CAS  PubMed  Google Scholar 

  33. Robida-Stubbs S, Glover-Cutter K, Lamming DW, et al. TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab. 2012;15:713–24. https://doi.org/10.1016/j.cmet.2012.04.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liang Y, Zhou Y, Zhou C, et al. Sertraline Promotes Health and Longevity in Caenorhabditis elegans. Gerontology. 2024;70:408–17. https://doi.org/10.1159/000536227.

    Article  CAS  PubMed  Google Scholar 

  35. Kullyev A, Dempsey CM, Miller S, et al. A genetic survey of fluoxetine action on synaptic transmission in Caenorhabditis elegans. Genetics. 2010;186:929–41. https://doi.org/10.1534/genetics.110.118877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weinshenker D, Garriga G, Thomas JH. Genetic and pharmacological analysis of neurotransmitters controlling egg laying in C. elegans. J Neurosci. 1995;15:6975–85. https://doi.org/10.1523/JNEUROSCI.15-10-06975.1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dempsey CM, Mackenzie SM, Gargus A, et al. Serotonin (5HT), fluoxetine, imipramine and dopamine target distinct 5HT receptor signaling to modulate Caenorhabditis elegans egg-laying behavior. Genetics. 2005;169:1425–36. https://doi.org/10.1534/genetics.104.032540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zullo JM, Drake D, Aron L, et al. Regulation of lifespan by neural excitation and REST. Nature. 2019;574:359–64. https://doi.org/10.1038/s41586-019-1647-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hobson RJ, Hapiak VM, Xiao H, et al. SER-7, a Caenorhabditis elegans 5-HT7-like receptor, is essential for the 5-HT stimulation of pharyngeal pumping and egg laying. Genetics. 2006;172:159–69. https://doi.org/10.1534/genetics.105.044495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leiser SF, Miller H, Rossner R, et al. Cell nonautonomous activation of flavin-containing monooxygenase promotes longevity and health span. Science. 2015;350:1375–8. https://doi.org/10.1126/science.aac9257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Werkman TR, Glennon JC, Wadman WJ, et al. Dopamine receptor pharmacology: interactions with serotonin receptors and significance for the aetiology and treatment of schizophrenia. CNS Neurol Disord Drug Targets. 2006;5:3–23. https://doi.org/10.2174/187152706784111614.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang YP, Zhang WH, Zhang P, et al. Intestine-specific removal of DAF-2 nearly doubles lifespan in Caenorhabditis elegans with little fitness cost. Nat Commun. 2022;13:6339. https://doi.org/10.1038/s41467-022-33850-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gems D, Pletcher S, Partridge L. Interpreting interactions between treatments that slow aging. Aging Cell. 2002;1:1–9. https://doi.org/10.1046/j.1474-9728.2002.00003.x.

    Article  CAS  PubMed  Google Scholar 

  44. Weeks JC, Roberts WM, Leasure C, et al. Sertraline Paroxetine, and Chlorpromazine Are Rapidly Acting Anthelmintic Drugs Capable of Clinical Repurposing. Sci Rep. 2018;8:975. https://doi.org/10.1038/s41598-017-18457-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ezcurra M, Tanizawa Y, Swoboda P, et al. Food sensitizes C. elegans avoidance behaviours through acute dopamine signalling. EMBO J. 2011;30:1110–22. https://doi.org/10.1038/emboj.2011.22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hieronymus F. Which antidepressant doses are optimal? Lancet Psychiatry. 2019;6:552–4. https://doi.org/10.1016/S2215-0366(19)30221-4.

    Article  PubMed  Google Scholar 

  47. Zhang A, Meecham-Garcia G, Nguyen Hong C, et al. Characterization of Effects of mTOR Inhibitors on Aging in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci. 2024;79:glae196. https://doi.org/10.1093/gerona/glae196.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gusarov I, Pani B, Gautier L, et al. Glycogen controls Caenorhabditis elegans lifespan and resistance to oxidative stress. Nat Commun. 2017;8:15868. https://doi.org/10.1038/ncomms15868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bazopoulou D, Knoefler D, Zheng Y, et al. Developmental ROS individualizes organismal stress resistance and lifespan. Nature. 2019;576:301–5. https://doi.org/10.1038/s41586-019-1814-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang L, Shen J, Liu C, et al. Nicotine rebalances NAD(+) homeostasis and improves aging-related symptoms in male mice by enhancing NAMPT activity. Nat Commun. 2023;14:900. https://doi.org/10.1038/s41467-023-36543-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (31871198), the Natural Science Foundation of Hunan Province (2022JJ30413), and the Scientific Research Fund of Hunan Provincial Education Department (23B0090).

Author information

Authors and Affiliations

Authors

Contributions

F.W. and G.L. designed research; Y.Z., L.C., M.W. and B.H. acquired the data; Y.Z., L.C., and Y.Y. analyzed data; Y.Z. and F.W. drafted the manuscript; F.W. and G.L. reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fang Wei.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Chen, L., Wang, M. et al. Paroxetine promotes longevity via ser-7-dop-4-IIS axis in Caenorhabditis elegans. GeroScience (2024). https://doi.org/10.1007/s11357-024-01492-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-024-01492-7

Keywords