Abstract
Inspired by similar definition in subdifferential theory, we define limiting sublevel set and limiting normal operator maps for quasiconvex functions. These maps satisfy important properties as semicontinuity and quasimonotonicity. Moreover, calculus rules together with necessary and sufficient optimality conditions for constrained optimization are established.
Similar content being viewed by others
References
Aubin, J.-P., Frankowska, H.: Set-valued analysis. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA (2009). Reprint of the 1990 edition
Aussel, D.: New developments in Quasiconvex optimization in Fixed Point Theory, Variational Analysis, and Optimization, pp 173–208. Ed Taylor & Francis (2014)
Aussel, D., Cotrina, J.: Quasimonotone quasi-variational inequality: Existence and applications. J. Optim. Theory Appl. 158(3), 637–652 (2013)
Aussel, D., Hadjisavvas, N.: Adjusted sublevel sets, normal operator, and quasiconvex programming. SIAM J. Opt. 16, 358–367 (2005)
Aussel, D., Ye, J.: Quasiconvex programming with locally starshaped constraint region and application to quasiconvex MPEC. Optimization 55, 433–457 (2006)
Borde, J., Crouzeix, J.-P.: Continuity properties of the normal cone to the level sets of a quasiconvex function. J. Opt. Theory Appl. 66, 415–429 (1990). doi:10.1007/BF00940929
Cabot, A., Thibault, L.: Sequential formulae for the normal cone to sublevel sets. Trans. Amer. Math. Soc. 366, 6591–6628 (2014)
Daniilidis, A., Hadjisavvas, N., Martínez-Legaz, J.E.: An appropriate subdifferential for quasiconvex functions. SIAM J. Optim. 12, 407–420 (2001)
Khanh, P.Q., Quyen, H., Yao, J.-C.: Optimality conditions under relaxed quasiconvexity assumptions using star and adjusted subdifferentials. Eur. J. Oper. Res. 212(2), 235–241 (2011)
Mordukhovich, B.S.: Variational analysis and generalized differentiation. I: Basic theory. II: Applications. Grundlehren der Mathematischen Wissenschaften 330/331. Springer, Berlin (2006). xxii, 579 p., xxii, 610 p.
Rockafellar, R.T., Wets, R.J.B.: Variational analysis. Grundlehren der mathematischen Wissenschaften. Springer (1998)
Saleh, A.R., Al-Mezel, F., Al-Solamy, R.M., Ansari, Q.H.: Fixed point theory, variational analysis, and optimization. Chapman and Hall (2014)
Author information
Authors and Affiliations
Corresponding author
Additional information
This paper is dedicated to Lionel Thibault
This work was partly supported by grant GA15-00735S of the Grant Agency of the Czech Republic.
Rights and permissions
About this article
Cite this article
Aussel, D., Pištěk, M. Limiting Normal Operator in Quasiconvex Analysis. Set-Valued Var. Anal 23, 669–685 (2015). https://doi.org/10.1007/s11228-015-0349-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11228-015-0349-0