[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Limiting Normal Operator in Quasiconvex Analysis

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

Inspired by similar definition in subdifferential theory, we define limiting sublevel set and limiting normal operator maps for quasiconvex functions. These maps satisfy important properties as semicontinuity and quasimonotonicity. Moreover, calculus rules together with necessary and sufficient optimality conditions for constrained optimization are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.-P., Frankowska, H.: Set-valued analysis. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA (2009). Reprint of the 1990 edition

    Book  Google Scholar 

  2. Aussel, D.: New developments in Quasiconvex optimization in Fixed Point Theory, Variational Analysis, and Optimization, pp 173–208. Ed Taylor & Francis (2014)

  3. Aussel, D., Cotrina, J.: Quasimonotone quasi-variational inequality: Existence and applications. J. Optim. Theory Appl. 158(3), 637–652 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aussel, D., Hadjisavvas, N.: Adjusted sublevel sets, normal operator, and quasiconvex programming. SIAM J. Opt. 16, 358–367 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Aussel, D., Ye, J.: Quasiconvex programming with locally starshaped constraint region and application to quasiconvex MPEC. Optimization 55, 433–457 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borde, J., Crouzeix, J.-P.: Continuity properties of the normal cone to the level sets of a quasiconvex function. J. Opt. Theory Appl. 66, 415–429 (1990). doi:10.1007/BF00940929

    Article  MATH  MathSciNet  Google Scholar 

  7. Cabot, A., Thibault, L.: Sequential formulae for the normal cone to sublevel sets. Trans. Amer. Math. Soc. 366, 6591–6628 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Daniilidis, A., Hadjisavvas, N., Martínez-Legaz, J.E.: An appropriate subdifferential for quasiconvex functions. SIAM J. Optim. 12, 407–420 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Khanh, P.Q., Quyen, H., Yao, J.-C.: Optimality conditions under relaxed quasiconvexity assumptions using star and adjusted subdifferentials. Eur. J. Oper. Res. 212(2), 235–241 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mordukhovich, B.S.: Variational analysis and generalized differentiation. I: Basic theory. II: Applications. Grundlehren der Mathematischen Wissenschaften 330/331. Springer, Berlin (2006). xxii, 579 p., xxii, 610 p.

    Book  Google Scholar 

  11. Rockafellar, R.T., Wets, R.J.B.: Variational analysis. Grundlehren der mathematischen Wissenschaften. Springer (1998)

  12. Saleh, A.R., Al-Mezel, F., Al-Solamy, R.M., Ansari, Q.H.: Fixed point theory, variational analysis, and optimization. Chapman and Hall (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Aussel.

Additional information

This paper is dedicated to Lionel Thibault

This work was partly supported by grant GA15-00735S of the Grant Agency of the Czech Republic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aussel, D., Pištěk, M. Limiting Normal Operator in Quasiconvex Analysis. Set-Valued Var. Anal 23, 669–685 (2015). https://doi.org/10.1007/s11228-015-0349-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-015-0349-0

Keywords

Mathematics Subject Classification (2000)

Navigation