[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

CryptoHHO: a bio-inspired cryptosystem for data security in Fog–Cloud architecture

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The exponential growth of Internet-of-Things (IoT) has raised several data security risks to the Fog–Cloud architecture. The performance and the computation cost of security algorithms hinder providing a secure real-time environment for IoT. This study proposes a novel two-layer cryptosystem, Cryptographic Harris Hawks Optimization (CryptoHHO), for Fog–Cloud architecture that reduces security overheads while maintaining confidentiality, integrity, and availability. The first layer of the proposed CryptoHHO is responsible for generating a highly randomized key using HHO to optimize Shannon entropy incorporation with transfer functions and a binarization mechanism. The second layer of CryptoHHO introduces a novel encipher model for encryption and decryption based on the Shift cipher, XOR operator, and an instance of crossover and mutation. The job execution avenue, i.e., Fog or cloud computing, is selected depending on the size of IoT requests, security sensitivity, and time sensitivity. The performance of CryptoHHO is compared against other emerging bio-inspired cryptographic algorithms. It was found that the CryptoHHO performs better than CryptoSSA, CryptoGWO, CryptoPSO, and CryptoWOA algorithms based on entropy, key generation time, transfer function comparison, execution time, and throughput. Further, the robustness of CryptoHHO is examined by various security analyses like brute-force attack resistivity, confusion-diffusion, CIA achievement, and statistical evaluations suggested by NIST and FIPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability statement

The data will be delivered upon request.

References

  1. Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Networks 54(15):2787–2805. https://doi.org/10.1016/j.comnet.2010.05.010

    Article  Google Scholar 

  2. Modina N, El Azouzi R, De Pellegrini F, Menasche DS, Figueiredo R (2022) Joint traffic offloading and aging control in 5G IoT networks. IEEE Trans Mob Comput. https://doi.org/10.1109/TMC.2022.3154089

    Article  Google Scholar 

  3. Chettri L, Bera R (2020) A comprehensive survey on internet of things (IoT) toward 5G wireless systems. IEEE Internet Things J 7(1):16–32. https://doi.org/10.1109/JIOT.2019.2948888

    Article  Google Scholar 

  4. Thakor VA, Razzaque MA, Khandaker MRA (2021) Lightweight cryptography algorithms for resource-constrained IoT devices: a review, comparison and research opportunities. IEEE Access 9:28177–28193

    Article  Google Scholar 

  5. Gonzales D, Kaplan JM, Saltzman E, Winkelman Z, Woods D (2017) Cloud-trust: a security assessment model for infrastructure as a service (IaaS) clouds. IEEE Trans Cloud Comput 5(3):523–536. https://doi.org/10.1109/TCC.2015.2415794

    Article  Google Scholar 

  6. Karame GO, Soriente C, Lichota K, Capkun S (2019) Securing cloud data under key exposure. IEEE Trans Cloud Comput 7(3):838–849. https://doi.org/10.1109/TCC.2017.2670559

    Article  Google Scholar 

  7. Ghosh R, Longo F, Frattini F, Russo S, Trivedi KS (2014) Scalable analytics for IaaS cloud availability. IEEE Trans Cloud Comput 2(1):57–70. https://doi.org/10.1109/TCC.2014.2310737

    Article  Google Scholar 

  8. Jawed MS, Sajid M (2022) A comprehensive survey on cloud computing: architecture, tools, technologies, and open issues. Int J Cloud Appl Comput 12(1):1–33. https://doi.org/10.4018/IJCAC.308277

    Article  Google Scholar 

  9. Cai H, Gu Y, Vasilakos AV, Xu B, Zhou J (2018) Model-driven development patterns for mobile services in cloud of things. IEEE Trans Cloud Comput 6(3):771–784. https://doi.org/10.1109/TCC.2016.2526007

    Article  Google Scholar 

  10. Tao F, Cheng Y, Da Xu L, Zhang L, Li BH (2014) CCIoT-CMfg: cloud computing and internet of things-based cloud manufacturing service system. IEEE Trans Ind Inform 10(2):1435–1442. https://doi.org/10.1109/TII.2014.2306383

    Article  Google Scholar 

  11. Botta A, de Donato W, Persico V, Pescapé A (2016) Integration of cloud computing and internet of things: a survey. Future Gener Comput Syst 56:684–700. https://doi.org/10.1016/j.future.2015.09.021

    Article  Google Scholar 

  12. Singh S, Sham EE, Vidyarthi DP (2024) Optimizing workload distribution in Fog–Cloud ecosystem: a JAYA based meta-heuristic for energy-efficient applications. Appl Soft Comput 154:111391. https://doi.org/10.1016/j.asoc.2024.111391

    Article  Google Scholar 

  13. Sharma S, Sajid M (2021) Integrated fog and cloud computing issues and challenges. Int J Cloud Appl Comput 11(4):174–193

    Google Scholar 

  14. Alli AA, Alam MM (2020) The fog cloud of things: A survey on concepts, architecture, standards, tools, and applications. Internet of Things (Netherlands). https://doi.org/10.1016/j.iot.2020.100177

    Article  Google Scholar 

  15. Sicari S, Rizzardi A, Coen-Porisini A (2022) Insights into security and privacy towards fog computing evolution. Comput Secur 120:102822. https://doi.org/10.1016/j.cose.2022.102822

    Article  Google Scholar 

  16. Khalid T et al (2021) A survey on privacy and access control schemes in fog computing. Int J Commun Syst 34(2):e4181. https://doi.org/10.1002/dac.4181

    Article  Google Scholar 

  17. Ficco M, Esposito C, Xiang Y, Palmieri F (2017) Pseudo-dynamic testing of realistic edge-fog cloud ecosystems. IEEE Commun Mag 55(11):98–104. https://doi.org/10.1109/MCOM.2017.1700328

    Article  Google Scholar 

  18. Alam M, Shahid M, Mustajab S (2024) Security challenges for workflow allocation model in cloud computing environment: a comprehensive survey, framework, taxonomy, open issues, and future directions. J Supercomput. https://doi.org/10.1007/s11227-023-05873-1

    Article  Google Scholar 

  19. Tabrizchi H, Kuchaki Rafsanjani M (2020) A survey on security challenges in cloud computing: issues, threats, and solutions. J Supercomput 76(12):9493–9532. https://doi.org/10.1007/s11227-020-03213-1

    Article  Google Scholar 

  20. Bacis E, di Vimercati S, Foresti S, Paraboschi S, Rosa M, Samarati P (2020) Securing resources in decentralized cloud storage. IEEE Trans Inf Forensics Secur 15:286–298. https://doi.org/10.1109/TIFS.2019.2916673

    Article  Google Scholar 

  21. Li J, Zhang Y, Ning J, Huang X, Sen Poh G, Wang D (2022) Attribute based encryption with privacy protection and accountability for CloudIoT. IEEE Trans. Cloud Comput. 10(2):762–773. https://doi.org/10.1109/TCC.2020.2975184

    Article  Google Scholar 

  22. Yang P, Xiong N, Ren J (2020) Data security and privacy protection for cloud storage: a survey. IEEE Access 8:131723–131740

    Article  Google Scholar 

  23. “Scopus Advanced Search.” https://www.scopus.com/term/analyzer.uri?sort=plf-f&src=s&sid=e57e7305d9817f54072c5fff2493ae5d&sot=a&sdt=a&sl=66&s=%28%28TITLE-ABS-KEY%28data+security+and+privacy%29%29+AND+%28cloud+computing%29%29&origin=resultslist&count=10&analyzeResults=Analyze+result. Accessed 16 Feb 2024

  24. Shen W, Qin J, Yu J, Hao R, Hu J, Ma J (2021) Data integrity auditing without private key storage for secure cloud storage. IEEE Trans Cloud Comput 9(4):1408–1421. https://doi.org/10.1109/TCC.2019.2921553

    Article  Google Scholar 

  25. Wazid M, Das AK, Kumar N, Vasilakos AV (2019) Design of secure key management and user authentication scheme for fog computing services. Future Gener Comput Syst 91:475–492. https://doi.org/10.1016/j.future.2018.09.017

    Article  Google Scholar 

  26. Ahsan MM, Gupta KD, Nag AK, Poudyal S, Kouzani AZ, Mahmud MAP (2020) Applications and evaluations of bio-inspired approaches in cloud security: a review. IEEE Access 8:180799–180814. https://doi.org/10.1109/ACCESS.2020.3027841

    Article  Google Scholar 

  27. Fausto F, Reyna-Orta A, Cuevas E, Andrade ÁG, Perez-Cisneros M (2020) From ants to whales: metaheuristics for all tastes. Artif Intell Rev 53(1):753–810. https://doi.org/10.1007/s10462-018-09676-2

    Article  Google Scholar 

  28. Mirjalili S, Dong JS, Lewis A (2019) Nature-inspired optimizers: theories, literature reviews and applications, 1st ed. Springer

  29. Sajid M, Mittal H, Pare S, Prasad M (2022) Routing and scheduling optimization for UAV assisted delivery system: a hybrid approach. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2022.109225

    Article  Google Scholar 

  30. Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci (NY) 237:82–117. https://doi.org/10.1016/j.ins.2013.02.041

    Article  MathSciNet  Google Scholar 

  31. Sajid M et al (2021) A novel algorithm for capacitated vehicle routing problem for smart cities. Symmetry (Basel). https://doi.org/10.3390/sym13101923

    Article  Google Scholar 

  32. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  33. Sajid M, Raza Z (2016) Energy-aware stochastic scheduling model with precedence constraints on DVFS-enabled processors. Turkish J Electr Eng Comput Sci 24(5):4117–4128. https://doi.org/10.3906/elk-1505-112

    Article  Google Scholar 

  34. Chunka C, Goswami RS, Banerjee S (2019) A novel approach to generate symmetric key in cryptography using genetic algorithm (GA). Adv Intell Syst Comput 755:713–724. https://doi.org/10.1007/978-981-13-1951-8_64

    Article  Google Scholar 

  35. Jawed MS, Sajid M (2023) Enhancing the cryptographic key using sample entropy and whale optimization algorithm. Int J Inf Technol. https://doi.org/10.1007/s41870-023-01526-x

    Article  Google Scholar 

  36. Kunhare N, Tiwari R, Dhar J (2022) Intrusion detection system using hybrid classifiers with meta-heuristic algorithms for the optimization and feature selection by genetic algorithm. Comput Electr Eng. https://doi.org/10.1016/j.compeleceng.2022.108383

    Article  Google Scholar 

  37. Jawed MS, Sajid M (2022) Cryptanalysis of lightweight block ciphers using metaheuristic algorithms in cloud of things (CoT). In: 2022 International Conference on Data Analytics for Business and Industry (ICDABI), pp 165–169. https://doi.org/10.1109/ICDABI56818.2022.10041583

  38. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  39. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

    Article  MathSciNet  Google Scholar 

  40. Mirjalili S, Lewis A (2013) S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evol Comput 9:1–14

    Article  Google Scholar 

  41. Lanza-Gutierrez JM, Crawford B, Soto R, Berrios N, Gomez-Pulido JA, Paredes F (2017) Analyzing the effects of binarization techniques when solving the set covering problem through swarm optimization. Expert Syst Appl 70:67–82. https://doi.org/10.1016/j.eswa.2016.10.054

    Article  Google Scholar 

  42. Kumar M et al (2023) A smart privacy preserving framework for industrial IoT using hybrid meta-heuristic algorithm. Sci Rep. https://doi.org/10.1038/s41598-023-32098-2

    Article  Google Scholar 

  43. Tahir M, Sardaraz M, Mehmood Z, Muhammad S (2021) CryptoGA: a cryptosystem based on genetic algorithm for cloud data security. Cluster Comput 24(2):739–752. https://doi.org/10.1007/s10586-020-03157-4

    Article  Google Scholar 

  44. Irshad RR et al (2023) A multi-objective bee foraging learning-based particle swarm optimization algorithm for enhancing the security of healthcare data in cloud system. IEEE Access 11:113410–113421. https://doi.org/10.1109/ACCESS.2023.3265954

    Article  Google Scholar 

  45. Jawed MS, Sajid M (2022) XECryptoGA: a metaheuristic algorithm-based block cipher to enhance the security goals. Evol Syst. https://doi.org/10.1007/s12530-022-09462-0

    Article  Google Scholar 

  46. Balashunmugaraja B, Ganeshbabu TR (2022) Privacy preservation of cloud data in business application enabled by multi-objective red deer-bird swarm algorithm. Knowl-Based Syst. https://doi.org/10.1016/j.knosys.2021.107748

    Article  Google Scholar 

  47. Alroobaea R, Arul R, Rubaiee S, Alharithi FS, Tariq U, Fan X (2022) AI-assisted bio-inspired algorithm for secure IoT communication networks. Cluster Comput 25(3):1805–1816. https://doi.org/10.1007/s10586-021-03520-z

    Article  Google Scholar 

  48. Sun Y, Lin F, Zhang N (2018) A security mechanism based on evolutionary game in fog computing. Saudi J Biol Sci 25(2):237–241. https://doi.org/10.1016/j.sjbs.2017.09.010

    Article  Google Scholar 

  49. Singh S, Vidyarthi DP (2023) An integrated approach of ML-metaheuristics for secure service placement in Fog–Cloud ecosystem. Internet of Things (Netherlands). https://doi.org/10.1016/j.iot.2023.100817

    Article  Google Scholar 

  50. Dubey K, Sharma SC, Kumar M (2022) A secure IoT applications allocation framework for integrated Fog–Cloud environment. J Grid Comput. https://doi.org/10.1007/s10723-021-09591-x

    Article  Google Scholar 

  51. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  52. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  53. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95—International Conference on Neural Networks, vol 4, pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  54. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  55. Kumar U (2023) Soil moisture prediction, kaggle.com. https://www.kaggle.com/datasets/uttamkumar15802/soil-moisture-prediction. Accessed 22 May 2023

  56. Arora A, Chakraborty P, Bhatia MPS (2022) Intervention of wearables and smartphones in real time monitoring of sleep and behavioral health: an assessment using adaptive neuro-fuzzy technique. Arab J Sci Eng 47(2):1999–2024. https://doi.org/10.1007/s13369-021-06078-5

    Article  Google Scholar 

  57. Cortez P, Morais A (2007) A data mining approach to predict forest fires using meteorological data. In: Proceedings of 13th Port Conference Artificial Intelligence, pp 512–523, [Online]. Available: http://www.dsi.uminho.pt/~pcortez/fires.pdf

  58. Ananth R (2023) Weather prediction. kaggle.com, 2023. https://www.kaggle.com/datasets/ananthr1/weather-prediction. Accessed 22 May 2023

  59. Rachakonda L, Mohanty SP, Kougianos E (2020) Good-eye: a device for automatic prediction and detection of elderly falls in smart homes. In: Proceedings of 2020 6th IEEE International Symposium Smart Electronic Systems iSES, pp 202–203. https://doi.org/10.1109/iSES50453.2020.00051

  60. Bommela NR (2021) Health monitoring system, kaggle.com, 2021. https://www.kaggle.com/datasets/nraobommela/health-monitoring-system. Accessed 22 May 2023

  61. Competition CP (2022) Smart home temperature, kaggle.com. https://www.kaggle.com/competitions/smart-homes-temperature-time-series-forecasting/data. Accessed 22 May 2023

  62. Kadiwal A (2021) Water quality. kaggle.com. https://www.kaggle.com/datasets/adityakadiwal/water-potability. Accessed 22 May 2023

  63. De Vito S, Fattoruso G, Pardo M, Tortorella F, Di Francia G (2012) Semi-supervised learning techniques in artificial olfaction: a novel approach to classification problems and drift counteraction. IEEE Sens J 12(11):3215–3224. https://doi.org/10.1109/JSEN.2012.2192425

    Article  Google Scholar 

  64. Stolfi DH, Alba E, Yao X (2017) Predicting car park occupancy rates in smart cities. Lecture Notes in Computational Science (including Subser. Lecture Notes Artificial Intelligence Lecture Notes Bioinformatics), vol. 10268 LNCS, pp. 107–117, 2017, https://doi.org/10.1007/978-3-319-59513-9_11

  65. Barker E (2020) Recommendation for key management. National Institute of Standards and Technology. https://doi.org/10.6028/nist.sp.800-57pt1r5

  66. Diffie W, Hellman ME (1977) Special feature exhaustive cryptanalysis of the NBS data encryption standard. Computer (Long Beach, CA) 10(6):74–84. https://doi.org/10.1109/C-M.1977.217750

    Article  Google Scholar 

  67. NIST (2001) Announcing the Advanced Encryption Standard (AES) [electronic resource]. Computer Security Division, Information Technology Laboratory, National Institute of Standards and Technology Gaithersburg, MD

  68. Mahajan A (2014) Burp suite essential. Packt Publishing Limited

  69. Bassham LE, et al (2010) SP 800–22 Rev. 1a. a statistical test suite for random and pseudorandom number generators for cryptographic applications. National Institute of Standards & Technology, Gaithersburg, MD, USA

Download references

Author information

Authors and Affiliations

Authors

Contributions

MS and MSJ were contributed to conceptualization; MSJ was contributed to methodology, formal analyses, data curation, and original draft preparation; MS was contributed to writing—review and editing, supervision.

Corresponding author

Correspondence to Md Saquib Jawed.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jawed, M.S., Sajid, M. CryptoHHO: a bio-inspired cryptosystem for data security in Fog–Cloud architecture. J Supercomput 80, 15834–15867 (2024). https://doi.org/10.1007/s11227-024-06055-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-024-06055-3

Keywords

Navigation