[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Lambek Calculus with Conjugates

  • Published:
Studia Logica Aims and scope Submit manuscript

A Correction to this article was published on 17 October 2020

This article has been updated

Abstract

We study an expansion of the Distributive Non-associative Lambek Calculus with conjugates of the Lambek product operator and residuals of those conjugates. The resulting logic is well-motivated, under-investigated and difficult to tackle. We prove completeness for some of its fragments and establish that it is decidable. Completeness of the logic is an open problem; some difficulties with applying the usual proof method are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Barwise, J., Constraints, Channels, and the Flow of Information, in P. Aczel, D. Israel, Y. Katagiri, and S. Peters (eds.), Situation Theory and Its Applications 3, CLSI Publications, 1993, pp. 3–27.

  2. Barwise, J., and J. Perry, Situations and Attitudes. MIT Press, 1983.

  3. Beall, Jc, R. Brady, J. M. Dunn, A. P. Hazen, E. Mares, R. K. Meyer, G. Priest, G. Restall, D. Ripley, J. Slaney, and R. Sylvan, On the Ternary Relation and Conditionality. Journal of Philosophical Logic 41:595–612, 2012.

  4. Bimbó, K., Combinatory Logic: Pure, Applied and Typed CRC Press, Boca Raton, FL, 2012.

  5. Bimbó, K., and J. M. Dunn, Generalized Galois Logics: Relational Semantics for Non-Classical Logical Calculi. CSLI Publications, 2008.

  6. Blackburn, P., M. de Rijke, and Y. Venema, Modal Logic, Cambridge Tracts in Theoretical Computer Science number 53, Cambridge, 2001.

  7. Brzozowski, J. A., Derivatives of regular expressions. Journal of the ACM 11:481–494, 1964.

  8. Buszkowski, W., Categories of partial functors. Lingua Posnaniensis 24:63–70, 1981.

  9. Buszkowski, W., Completeness Results for Lambek Syntactic Calculus. Zeitschrift für Mathematische Logic und Grundlagen der Mathematik 32:13–28, 1986.

  10. Buszkowski, W., Categorial grammars with negative information, in H. Wansing (ed.), Negation. A Notion in Focus, Walter de Gruyter, Berlin and New York, 1996, pp. 107–126.

  11. Buszkowski, W., and M. Farulewski, Nonassociative Lambek Calculs with Additives and Context-Free Languages, in O. Grumberg, M. Kaminski, S. Katz, and S. Wintner (eds.), Languages: From Formal to Natural. Lecture Notes in Computer Science v. 5533, 2009, pp. 45–58.

  12. Došen, K., A Brief Survey of Frames for the Lambek Calculus. Mathematical Logic Quarterly 38(1):179–187, 1992.

  13. Dunn, J. M., Positive Modal Logic. Studia Logica 55(2):301–317, 1995.

  14. Dunn, J. M., and R. K. Meyer, Combinators and Structurally Free Logic Logic Journal of the IGPL 5(4):505–537, 1997.

  15. Fine, K., Models for Entailment. Journal of Philosophical Logic 3:347–372, 1974.

  16. Galatos, N., P. Jipsen, T. Kowalski, and H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier, 2007.

  17. Ginsburg, S., and E. H. Spanier, Quotients of Context-Free Languages. Journal of the ACM 10(4):487–492, 1963.

  18. Goranko, V., and A. Galton, Temporal Logic, in E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, 2015. https://plato.stanford.edu/archives/win2015/entries/logic-temporal.

  19. Hopcroft, J. E., and J. D. Ullman, Introduction to Automata Theory, Languages, and Computation. Addison-Wesley Publishing, 1979.

  20. Jónsson, B., and A. Tarski, Boolean Algebras with Operators, Part I. American Journal of Mathematics 73(4):891–939, 1951.

  21. Jónsson, B., and C. Tsinakis, Relation Algebras as Residuated Boolean Algebras. Algebra Universalis 30(4):469–478, 1993.

  22. Kaminski, M., and N. Francez, Relational Semantics of the Lambek Calculus Extended with Classical Propositional Logic. Studia Logica 102:479–497, 2014.

  23. Kanazawa, M., The Lambek Calculus Enriched with Additional Connectives. Journal of Logic, Language, and Information 1(2):141–171, 1992.

  24. Kerr, A. D., A plea for KR, Synthese, 2019. Online Access: https://doi.org/10.1007/s11229-019-02265-y.

  25. Kikot, S., A. Kurucz, Y. Tanaka, F. Wolter, and M. Zakharyashev, Kripke Completeness of Strictly Positive Modal Logics over Meet-Semilattices with Operators. The Journal of Symbolic Logic 84(2):533–588, 2019.

  26. Kurtonina, N., Frames and Labels. A Modal Analysis of Categorial Inference. PhD Thesis. Utrecht University, 1994.

  27. Lambek, J., The Mathematics of Sentence Structure. American Mathematical Monthly 65(3):154–170, 1958.

  28. Lambek, J., On the Calculus of Syntactic Types, in R. Jackobson (ed.), Structure of Langugae and Its Mathematical Aspects, AMS, Providence, 1961, pp. 166–178.

  29. Maddux, R. D., Relation Algebras. Elsevier, 2006.

  30. Maksimova, L. L., Struktury s impikatsiei (Structures with Implication). Algebra i Logika 12(4):445–467, 1973.

  31. Mares, E., Relevant Logic: A Philosophical Interpretation. Cambridge University Press, 2004.

  32. Mikulás, S., Complete Calculus for Conjugated Arrow Logic, in M. Marx, L. Pólos, and M. Mosuch (eds.), Arrow Logic and Multi-Modal Logic, CSLI Publication, Chapter 6, 1996.

  33. Priest, G., and R. Sylvan, Simplified Semantics for Basic Relevant Logics, Journal of Philosophical Logic 21(2):217–232, 1992.

  34. Restall, G., Information Flow and Relevant Logics, in J. Seligman and D. Westerståhl (eds.), Logic, Language, and Computation: 1994 Proceedings, CSLI Publications, 1995, pp. 463–477.

  35. Restall, G., An Introduction to Substructural Logics. Routledge, London, 2000.

  36. Routley, R., and R. K. Meyer, Semantics of entailment, in H. Leblanc (ed.), Truth, Syntax and Modality, North Holland, 1972, pp. 194–243.

  37. Routley, R., R. K. Meyer, V. Plumwood, and R. T. Brady, Relevant Logics and Their Rivals 1. Ridgeview, 1982.

  38. Urquhart, A., Semantics for Relevant Logics. The Journal of Symbolic Logic 37(1):159–169, 1972.

  39. Urquhart, A., The Undecidability of Entailment and Relevant Implication. The Journal of Symbolic Logic 49(4):1059–1073, 1984.

  40. van Benthem, J., Language in Action. MIT Press, 1995.

  41. Wansing, H., A Note on Negation in Categorial Grammar. Logic Journal of the IGPL 15:271–286, 2007.

Download references

Acknowledgements

This work is supported by the Czech Science Foundation Grant Number GJ18-19162Y. The authors are grateful to Wojciech Buszkowski, Tommaso Moraschini, audiences of the CLMPST 2019 and the North American meeting of the ASL 2019, and anonymous referees for a number of useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Tedder.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented by Heinrich Wansing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedlár, I., Tedder, A. Lambek Calculus with Conjugates. Stud Logica 109, 447–470 (2021). https://doi.org/10.1007/s11225-020-09913-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-020-09913-2

Keywords

Navigation