[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Epimorphisms, Definability and Cardinalities

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

We characterize, in syntactic terms, the ranges of epimorphisms in an arbitrary class of similar first-order structures (as opposed to an elementary class). This allows us to strengthen a result of Bacsich, as follows: in any prevariety having at most \(\mathfrak {s}\) non-logical symbols and an axiomatization requiring at most \(\mathfrak {m}\) variables, if the epimorphisms into structures with at most \(\mathfrak {m}+\mathfrak {s}+\aleph _0\) elements are surjective, then so are all of the epimorphisms. Using these facts, we formulate and prove manageable ‘bridge theorems’, matching the surjectivity of all epimorphisms in the algebraic counterpart of a logic \(\,\vdash \) with suitable infinitary definability properties of \(\,\vdash \), while not making the standard but awkward assumption that \(\,\vdash \) comes furnished with a proper class of variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek, J., How many variables does a quasivariety need? Algebra Universalis 27:44–48, 1990.

    Article  Google Scholar 

  2. Bacsich, P. D., Model theory of epimorphisms, Canad. Math. Bull. 17:471–477, 1974.

    Article  Google Scholar 

  3. Banaschewski, B., and H. Herrlich, Subcategories defined by implications, Houston J. Math. 2:149–171, 1976.

    Google Scholar 

  4. Bezhanishvili, G., T. Moraschini, and J. G. Raftery, Epimorphisms in varieties of residuated structures, J. Algebra 492:185–211, 2017.

    Article  Google Scholar 

  5. Birkhoff, G., On the structure of abstract algebras, Proc. Cambridge Phil. Soc. 29:433–454, 1935.

    Article  Google Scholar 

  6. Blok, W. J., and E. Hoogland, The Beth property in algebraic logic, Studia Logica 83:49–90, 2006.

    Article  Google Scholar 

  7. Blok, W. J., and B. Jónsson, Equivalence of consequence operations, Studia Logica 83:91–110, 2006.

    Article  Google Scholar 

  8. Blok, W. J., and D. Pigozzi, Algebraizable Logics, Memoirs of the American Mathematical Society 396, Amer. Math. Soc., Providence, 1989.

  9. Blok, W. J., and D. Pigozzi, Algebraic semantics for universal Horn logic without equality, in J. D. H. Smith, and A. Romanowska (eds.), Universal Algebra and Quasigroup Theory, Heldermann Verlag, Berlin, 1992, pp. 1–56.

  10. Budkin, A., Dominions in quasivarieties of universal algebras, Studia Logica 78:107–127, 2004.

    Article  Google Scholar 

  11. Budkin, A., Dominions of universal algebras and projective properties, Algebra and Logic 47:304–313, 2008.

    Article  Google Scholar 

  12. Campercholi, M. A., Dominions and primitive positive functions, J. Symbolic Logic 83:40–54, 2018.

    Article  Google Scholar 

  13. Czelakowski, J., Equivalential logics (I), and (II), Studia Logica 40:227–236, and 355–372, 1981.

  14. Czelakowski, J., Protoalgebraic Logics, Kluwer, Dordrecht, 2001.

    Book  Google Scholar 

  15. Czelakowski, J., and D. Pigozzi, Amalgamation and interpolation in abstract algebraic logic, in X. Caicedo, and C. H. Montenegro (eds.), Models, Algebras and Proofs, Lecture Notes in Pure and Applied Mathematics, No. 203, Marcel Dekker, New York, 1999, pp. 187–265.

  16. Font, J. M., Abstract Algebraic Logic – An Introductory Textbook, Studies in Logic 60, College Publications, London, 2016.

  17. Font, J. M., R. Jansana, and D. Pigozzi, A survey of abstract algebraic logic, and Update, Studia Logica 74:13–97, 2003, and 91:125–130, 2009.

  18. Freyd, P., Abelian categories, Harper and Row, New York, 1964.

    Google Scholar 

  19. Gabbay, D. M., and L. Maksimova, Interpolation and Definability: Modal and Intuitionistic Logics, Oxford Logic Guides 46, Clarendon Press, Oxford, 2005.

  20. Gorbunov, V. A., Algebraic Theory of Quasivarieties, Consultants Bureau, New York, 1998.

    Google Scholar 

  21. Grätzer, G., and H. Lakser, A note on the implicational class generated by a class of structures, Canad. Math. Bull. 16:603–605, 1973.

    Article  Google Scholar 

  22. Herrmann, B., Equivalential and algebraizable logics, Studia Logica 57:419–436, 1996.

    Article  Google Scholar 

  23. Herrmann, B., Characterizing equivalential and algebraizable logics by the Leibniz operator, Studia Logica 58:305–323, 1997.

    Article  Google Scholar 

  24. Henkin, L., J. D. Monk, and A. Tarski, Cylindric Algebras, Part II, North-Holland, Amsterdam, 1985.

  25. Higgins, P., Epimorphisms and amalgams, Colloquium Mathematicum 56:1–17, 1988.

    Article  Google Scholar 

  26. Hoogland, E., Algebraic characterizations of various Beth definability properties, Studia Logica 65:91–112, 2000.

    Article  Google Scholar 

  27. Hoogland, E., Definability and interpolation: model-theoretic investigations, PhD. Thesis, Institute for Logic, Language and Computation, University of Amsterdam, 2001.

  28. Isbell, J. R., Epimorphisms and dominions, in S. Eilenberg, et al. (eds.), Proceedings of the Conference on Categorical Algebra (La Jolla, California, 1965), Springer, New York, 1966, pp. 232–246.

  29. Kreisel, G., Explicit definability in intuitionistic logic, J. Symbolic Logic 25:389–390, 1960.

    Article  Google Scholar 

  30. Łoś, J., and R. Suszko, Remarks on sentential logics, Proc. Kon. Nederl. Akad. van Wetenschappen, Series A 61:177–183, 1958.

    Article  Google Scholar 

  31. Maksimova, L. L., Intuitionistic logic and implicit definability, Ann. Pure Appl. Logic 105:83–102, 2000.

    Article  Google Scholar 

  32. Maksimova, L. L., Implicit definability and positive logics, Algebra and Logic 42:37–53, 2003.

    Article  Google Scholar 

  33. Maltsev, A. I., Several remarks on quasivarieties of algebraic systems (Russian), Algebra i Logika 5:3–9, 1966.

    Google Scholar 

  34. Prucnal, T., and A. Wroński, An algebraic characterization of the notion of structural completeness, Bull. Sect. Logic 3:30–33, 1974.

    Google Scholar 

  35. Raftery, J. G., Correspondences between Gentzen and Hilbert systems, J. Symbolic Logic 71:903–957, 2006.

    Article  Google Scholar 

  36. Raftery, J. G., A non-finitary sentential logic that is elementarily algebraizable, J. Logic Comput. 20:969–975, 2010.

    Article  Google Scholar 

  37. Wasserman, D., Epimorphisms and Dominions in Varieties of Lattices, PhD thesis, University of California at Berkeley, 2001.

  38. Wójcicki, R., Theory of Logical Calculi, Kluwer, Dordrecht, 1988.

    Book  Google Scholar 

Download references

Acknowledgements

This work received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 689176 (project “Syntax Meets Semantics: Methods, Interactions, and Connections in Substructural logics”). The first author was also supported by the Project GA17-04630S of the Czech Science Foundation (GAČR). The second author was supported in part by the National Research Foundation of South Africa (UID 85407). The third author was supported by the DST-NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS), South Africa. Opinions expressed and conclusions arrived at are those of the authors and are not necessarily to be attributed to the CoE-MaSS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Raftery.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented by Yde Venema

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moraschini, T., Raftery, J.G. & Wannenburg, J.J. Epimorphisms, Definability and Cardinalities. Stud Logica 108, 255–275 (2020). https://doi.org/10.1007/s11225-019-09846-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-019-09846-5

Keywords

Navigation