[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Examining the interactive effects of the filter bubble and the echo chamber on radicalization

  • Published:
Journal of Experimental Criminology Aims and scope Submit manuscript

Abstract

Objectives

Despite popular notions of “filter bubbles” and “echo chambers” contributing to radicalization, little evidence exists to support these hypotheses. However, social structure social learning theory would suggest a hereto untested interaction effect.

Methodology

An RCT of new Twitter users in which participants were randomly assigned to a treatment of “filter bubble” (personalization algorithm) suppression. Ego-centric network and survey data were combined to test the effects on justification for suicide bombings.

Findings

Statistically significant interaction effects were found for two proxies of the echo chamber, the E-I index and modularity. For the treatment group, higher scores on both factors decreased the likelihood for radicalization, with opposing trends in the control group.

Conclusions

The echo chamber effect may be dependent on the filter bubble. More research is needed on online network structures in radicalization. While personalization algorithms can potentially be harmful, they may also be leveraged to facilitate interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The control group video was designed to encourage participants to act like new Twitter users, who will use their real email addresses and accept these recommendations. While some new Twitter users may not do this, we sought to avoid contamination with the treatment.

  2. The E-I index is calculated as the number of external ties (Ge) minus the number of internal ties (Gi), divided by the total number of ties.

References

  • Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Sage.

  • Akers, R. L. (1998). Social learning and social structure: A general theory of crime and deviance. Transaction Publishers.

  • Akers, R. L., & Jennings, W. G. (2016). Social learning theory. Wiley Handbooks in Criminology and Criminal Justice, 230–240.

  • Akers, R. L., & Silverman, A. (2004). Toward a social learning model of violence and terrorism. Violence: From theory to research (pp. 19–35).

  • Akins, J. K., & Winfree Jr., L. T. (2016). Social learning theory and becoming a terrorist: New challenges for a general theory. The Handbook of the Criminology of Terrorism, 133.

  • Al Baghal, T., Sloan, L., Jessop, C., Williams, M. L., & Burnap, P. (2020). Linking Twitter and survey data: The impact of survey mode and demographics on consent rates across three UK studies. Social Science Computer Review, 38(5), 517–532.

    Article  Google Scholar 

  • Amjad, N., & Wood, A. M. (2009). Identifying and changing the normative beliefs about aggression which lead young Muslim adults to join extremist anti-Semitic groups in Pakistan. Aggressive Behavior: Official Journal of the International Society for Research on Aggression, 35(6), 514–519.

    Article  Google Scholar 

  • Barberá, P. (2015). Birds of the same feather tweet together: Bayesian ideal point estimation using Twitter data. Political analysis, 23(1), 76–91.

    Article  Google Scholar 

  • Baron, S. W., & Tindall, D. B. (1993). Network structure and delinquent attitudes within a juvenile gang. Social Networks, 15(3), 255–273.

    Article  Google Scholar 

  • Bélanger, J. J., Nisa, C. F., Schumpe, B. M., Gurmu, T., Williams, M. J., & Putra, I. E. (2020a). Do counter-narratives reduce support for ISIS? Yes, but not for their target audience. Frontiers in psychology, 11.

  • Bélanger, J. J., Robbins, B. G., Muhammad, H., Moyano, M., Nisa, C. F., Schumpe, B. M., & Blaya-Burgo, M. (2020b). Supporting political violence: The role of ideological passion and social network. Group Processes & Intergroup Relations, 23(8), 1187–1203.

    Article  Google Scholar 

  • Benigni, M. C., Joseph, K., & Carley, K. M. (2017). Online extremism and the communities that sustain it: Detecting the ISIS supporting community on Twitter. PloS one, 12(12), e0181405.

    Article  Google Scholar 

  • Bhui, K., Warfa, N., & Jones, E. (2014). Is violent radicalisation associated with poverty, migration, poor self-reported health and common mental disorders? PloS one, 9(3), e90718.

    Article  Google Scholar 

  • Brandes, U., Lerner, J., Lubbers, M. J., McCarty, C., & Molina, J. L. (2008, March). Visual statistics for collections of clustered graphs. IEEE Pacific visualization symposium, 47–54.

  • Brewer, R., Cale, J., Goldsmith, A., & Holt, T. (2018). Young people, the internet, and emerging pathways into criminality: A study of Australian adolescents. International Journal of Cyber Criminology, 12(1), 115–132.

    Google Scholar 

  • Bright, J. (2018). Explaining the emergence of political fragmentation on social media: The role of ideology and extremism. Journal of Computer-Mediated Communication, 23(1), 17–33.

    Article  Google Scholar 

  • Brooks, B., Hogan, B., Ellison, N., Lampe, C., & Vitak, J. (2014). Assessing structural correlates to social capital in Facebook ego networks. Social Networks, 38, 1–15.

    Article  Google Scholar 

  • Bruns, A. (2017). Echo Chamber? What echo chamber? Reviewing the evidence. School of Communication. Digital Media Research Centre.

  • Bruns, A. (2019a). It’s not the technology, stupid: How the ‘Echo Chamber’ and ‘Filter Bubble’ metaphors have failed us. IAMCR Conference, Mediated Communication, Public Opinion and Society Section, Submission No.19771. Madrid, Spain.

  • Bruns, A. (2019b). Filter bubble. Internet Policy Review, 8(4).

  • Bucher, T. (2012). Want to be on the top? Algorithmic power and the threat of invisibility on Facebook. New media & society, 14(7), 1164–1180.

    Article  Google Scholar 

  • Bucher, T. (2013). Objects of intense feeling: The case of the Twitter API. Computational Culture, 3.

  • Cameron, A. C., Gelbach, J. B., & Miller, D. L. (2008). Bootstrap-based improvements for inference with clustered errors. The Review of Economics and Statistics, 90(3), 414–427.

  • Castro, J. C. L. D. (2018). Social networks as a model of algorithmic governance. Matrizes, 12(2), 165–191.

    Article  Google Scholar 

  • Dearing, E., & Hamilton, L. C. (2006). Best practices in quantitative methods for developmentalists: V. Contemporary advances and classic advice for analyzing mediating and moderating variables. Monographs of the Society for Research in Child Development.

  • Dezember, A., Stoltz, M., Marmolejo, L., Kanewske, L. C., Feingold, K. D., Wire, S., et al. (2020). The lack of experimental research in criminology—evidence from Criminology and Justice Quarterly. Journal of Experimental Criminology, 1–36.

  • Ducol, B., Bouchard, M., Davies, G., Ouellet, M., & Neudecker, C. (2016). Assessment of the state of knowledge: Connections between research on the social psychology of the Internet and violent extremism. Waterloo: TSAS The Canadian Network for Research on Terrorism, Security, and Society 16-05.

  • Eady, G., Nagler, J., Guess, A., Zilinsky, J., & Tucker, J. A. (2019). How many people live in political bubbles on social media? Evidence from linked survey and Twitter data. Sage Open, 9(1), 2158244019832705.

    Article  Google Scholar 

  • Everton, S. F. (2016). Social networks and religious violence. Review of Religious Research, 58(2), 191–217.

    Article  Google Scholar 

  • Flaxman, S., Goel, S., & Rao, J. M. (2016). Filter bubbles, echo chambers, and online news consumption. Public opinion quarterly, 80(S1), 298–320.

    Article  Google Scholar 

  • Frissen, T. (2021). Internet, the great radicalizer? Exploring relationships between seeking for online extremist materials and cognitive radicalization in young adults. Computers in Human Behavior, 114, 106549.

    Article  Google Scholar 

  • Ganesh, B., & Bright, J. (2020). Countering extremists on social media: Challenges for Strategic communication and content moderation. Policy & Internet, 12, 6–19.

    Article  Google Scholar 

  • Gill, P., Corner, E., Conway, M., Thornton, A., Bloom, M., & Horgan, J. (2017). Terrorist use of the Internet by the numbers: Quantifying behaviors, patterns, and processes. Criminology & Public Policy, 16(1), 99–117.

  • Goldsmith, A., & Brewer, R. (2015). Digital drift and the criminal interaction order. Theoretical Criminology, 19(1), 112–130.

    Article  Google Scholar 

  • Granovetter, M. S. (1973). The strength of weak ties. American journal of sociology, 78(6), 1360–1380.

    Article  Google Scholar 

  • Granovetter, M. (1983). The strength of weak ties: A network theory revisited. Sociological Theory, 1, 201–233.

    Article  Google Scholar 

  • Hasisi, B., Carmel, T., Weisburd, D., & Wolfowicz, M. (2020). Crime and terror: Examining criminal risk factors for terrorist recidivism. Journal of Quantitative Criminology, 36(3), 449–472.

    Article  Google Scholar 

  • Hawdon, J., & Costello, M. (2020). Learning to hate: Explaining participation in online extremism. In Radicalization and Counter-Radicalization. Emerald Publishing Limited.

  • Hawdon, J., Bernatzky, C., & Costello, M. (2019). Cyber-routines, political attitudes, and exposure to violence-advocating online extremism. Social Forces, 98(1), 329–354.

    Article  Google Scholar 

  • Haynie, D. L. (2001). Delinquent peers revisited: Does network structure matter? American journal of sociology, 106(4), 1013–1057.

    Article  Google Scholar 

  • Haynie, D. L., & South, S. J. (2005). Residential mobility and adolescent violence. Social forces, 84(1), 361–374.

    Article  Google Scholar 

  • Hilbert, M., Ahmed, S., Cho, J., Liu, B., & Luu, J. (2018). Communicating with algorithms: A transfer entropy analysis of emotions-based escapes from online echo chambers. Communication Methods and Measures, 12(4), 260–275.

    Article  Google Scholar 

  • Holt, T., Freilich, J. D., Chermak, S., & McCauley, C. (2015). Political radicalization on the Internet: Extremist content, government control, and the power of victim and jihad videos. Dynamics of Asymmetric Conflict, 8(2), 107–120.

    Article  Google Scholar 

  • Ill, P., Corner, E., Conway, M., Thornton, A., Bloom, M., & Horgan, J. (2017). Terrorist use of the Internet by the numbers: Quantifying behaviors, patterns, and processes. Criminology & Public Policy, 16(1), 99–117.

    Article  Google Scholar 

  • Jose, R., Hipp, J. R., Butts, C. T., Wang, C., & Lakon, C. M. (2016). Network structure, influence, selection, and adolescent delinquent behavior: Unpacking a dynamic process. Criminal Justice and Behavior, 43(2), 264–284.

    Article  Google Scholar 

  • Jugl, I., Lösel, F., Bender, D., & King, S. (2020). Psychosocial prevention programs against radicalization and extremism: a meta-analysis of outcome evaluations. European journal of psychology applied to legal context, 13(1), 37–46.

    Article  Google Scholar 

  • Kaczkowski, W., Swartout, K. M., Branum-Martin, L., Horgan, J. G., & Lemieux, A. F. (2020). Impact of perceived peer attitudes and social network diversity on violent extremist intentions. Terrorism and Political Violence.

  • Kaiser, J., & Rauchfleisch, A. (2020). Birds of a feather get recommended together: Algorithmic homophily in YouTube’s Channel Recommendations in the United States and Germany. Social Media+ Society, 6(4), 2056305120969914.

    Google Scholar 

  • Keene, S. D. (2011). Terrorism and the internet: a double-edged sword. Journal of Money Laundering Control, 14(4), 359.

    Article  Google Scholar 

  • Kennedy, J., & Weimann, G. (2011). The strength of weak terrorist ties. Terrorism and Political Violence, 23(2), 201–212.

    Article  Google Scholar 

  • Krackhardt, D. (1992). The Strength of Strong Ties: The Importance of Philos in Organizations. In N. Nohria & R. G. Eccles (Eds.), Networks and Organizations: Structure, Form, and Action (pp. 216–239). Harvard.

  • Krackhardt, D., & Stern, R. (1988). Informal networks and organizational crises: an experimental simulation. Social psychology quarterly, 51(2), 123–140.

    Article  Google Scholar 

  • LaFree, G., Weerman, F., & Bijleved, C. (2020). Editor’s Introduction: Terrorism and Violent Extremism. Journal of Quantitative Criminology, 36, 339–405.

    Article  Google Scholar 

  • Macdonald, S., & Whittaker, J. (2019). Online radicalization: Contested terms and conceptual clarity. In John R. Vacca (Ed.) Online terrorist propaganda, recruitment, and radicalization. Boca Raton:CRC Press 33-45.

  • MacKinnon, J. G., & Webb, M. D. (2018). The wild bootstrap for few (treated) clusters. The Econometrics Journal, 21(2), 114–135.

    Article  Google Scholar 

  • Markgraf, M., & Schoch, M. (2019). "Quantification of Echo Chambers: A Methodological Framework Considering Multi-Party Systems". In Proceedings of the 27th European Conference on Information Systems (ECIS), Stockholm & Uppsala, Sweden, June 8-14

  • Marquardt, D. W. (1980). Comment: You should standardize the predictor variables in your regression models. Journal of the American Statistical Association, 75(369), 87–91.

    Google Scholar 

  • McCauley, C. (2012). Testing theories of radicalization in polls of US Muslims. Analyses of Social Issues and Public Policy, 12(1), 296–311.

    Article  Google Scholar 

  • McCuddy, T., & Vogel, M. (2015a). Beyond traditional interaction: Exploring the functional form of the exposure-offending association across online network size. Journal of Criminal Justice, 43(2), 89–98.

    Article  Google Scholar 

  • McCuddy, T., & Vogel, M. (2015b). More than just friends: Online social networks and offending. Criminal Justice Review, 40(2), 169–189.

    Article  Google Scholar 

  • McGloin, J. M., Sullivan, C. J., & Thomas, K. J. (2014). Peer influence and context: the interdependence of friendship groups, schoolmates and network density in predicting substance use. Journal of youth and adolescence, 43(9), 1436–1452.

    Article  Google Scholar 

  • McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual review of sociology, 27(1), 415–444.

    Article  Google Scholar 

  • Möller, V. (2020). Bedeutung und Nutzen der egozentrierten Netzwerkanalyse in der Radikalisierungsforschung: Ein Werkstattbericht zum Einsatz der Methode. Monatsschrift für Kriminologie und Strafrechtsreform, 103(2), 158–168.

    Article  Google Scholar 

  • Moskalenko, S., & McCauley, C. (2009). Measuring political mobilization: The distinction between activism and radicalism. Terrorism and Political Violence, 21(2), 239–260.

    Article  Google Scholar 

  • Musa, S., & Bendett, S. (2010). Islamic Radicalization in the United States. New Trends and a Proposed Methodology for Disruption. Washington D.C.: National Defense University, Washington DC Center for Technology and National Security Policy. Retrieved from https://apps.dtic.mil/sti/pdfs/ADA532696.pdf

  • Neumann, P. R. (2013). Options and strategies for countering online radicalization in the United States. Studies in Conflict & Terrorism, 36(6), 431–459.

    Article  Google Scholar 

  • Newman, M. E. (2003). Mixing patterns in networks. Physical review E, 67(2), 026126.

    Article  Google Scholar 

  • O’Callaghan, D., Greene, D., Conway, M., Carthy, J., & Cunningham, P. (2015). Down the (white) rabbit hole: The extreme right and online recommender systems. Social Science Computer Review, 33(4), 459–478.

    Article  Google Scholar 

  • O'Hara, K., & Stevens, D. (2015). Echo chambers and online radicalism: Assessing the Internet's complicity in violent extremism. Policy & Internet, 7(4), 401–422.

    Article  Google Scholar 

  • Olfowicz, M., Litmanovitz, Y., Weisburd, D., & Hasisi, B. (2020). A field-wide systematic review and meta-analysis of putative risk and protective factors for radicalization outcomes. Journal of Quantitative Criminology, 36(3), 407–447.

    Article  Google Scholar 

  • Papachristos, A. V. (2011). The coming of a networked criminology. Advances in criminological theory, 17, 101–140.

    Google Scholar 

  • Pariser, E. (2011). The filter bubble: What the Internet is hiding from you. Penguin UK.

  • Pauwels, L., & Schils, N. (2016). Differential online exposure to extremist content and political violence: Testing the relative strength of social learning and competing perspectives. Terrorism and Political Violence, 28(1), 1–29.

    Article  Google Scholar 

  • Pedersen, M. Y., Smets, S., & Ågotnes, T. (2019). Analyzing echo chambers: a logic of strong and weak ties. In International Workshop on Logic, Rationality and Interaction. Springer, Berlin, Heidelberg 183-198.

  • Reed, A., Whittaker, J., Votta, F., & Looney, S. (2019). Radical filter bubbles: Social media personalization algorithms and extremist content. Global Research Network on Terrorism and Technology.

  • Rees, C., & Pogarsky, G. (2011). One bad apple may not spoil the whole bunch: Best friends and adolescent delinquency. Journal of Quantitative Criminology, 27(2), 197–223.

    Article  Google Scholar 

  • Regnér, L. (2014). The YouTube-Born Terrorist. Journal Exit-Deutschland. Zeitschrift für Deradikalisierung und demokratische Kultur, 2, 139–189.

    Google Scholar 

  • Repke, L., & Benet-Martínez, V. (2017). Conceptualizing the dynamics between bicultural identification and personal social networks. Frontiers in Psychology, 8, 469.

    Article  Google Scholar 

  • Reynolds, A. D., & Crea, T. M. (2017). The integration of immigrant youth in schools and friendship networks. Population Research and Policy Review, 36(4), 501–529.

    Article  Google Scholar 

  • Richards, I., & Wood, M. (2020). Responding to online violent extremism. In C. A. Ireland, M. Lewis, A. Lopez, & J. L. Ireland (Eds.), The Handbook of Collective Violence: Current Developments and Understanding (pp. 1–13). Routledge.

  • Rieger, D., Frischlich, L., & Bente, G. (2013). Propaganda 2.0: Psychological effects of right-wing and Islamic extremist internet videos. Luxemburger:Wolters Kluwer Deutschland.

  • Roodman, D., Nielsen, M. Ø., MacKinnon, J. G., & Webb, M. D. (2019). Fast and wild: Bootstrap inference in Stata using boottest. The Stata Journal, 19(1), 4–60.

    Article  Google Scholar 

  • Sageman, M. (2008). Leaderless Jihad: Terror networks in the twenty-first century. University of Pennsylvania Press.

  • Sasaki, Y., Kawai, D., & Kitamura, S. (2015). The anatomy of tweet overload: How number of tweets received, number of friends, and egocentric network density affect perceived information overload. Telematics and Informatics, 32(4), 853–861.

    Article  Google Scholar 

  • Schmid, A. (2017). Public opinion survey. Data to measure sympathy and support for Islamist terrorism. International Centre for Counter-Terrorism-The Hague.

  • Schmitt, J. B., Rieger, D., Rutkowski, O., & Ernst, J. (2018). Counter-messages as prevention or promotion of extremism?! the potential role of youtube: Recommendation algorithms. Journal of communication, 68(4), 780–808.

    Article  Google Scholar 

  • Shortland, N., Nader, E., Imperillo, N., Ross, K., & Dmello, J. (2017). The interaction of extremist propaganda and anger as predictors of violent responses. Journal of interpersonal violence, 0886260517747599.

  • Shortland, N., Nader, E., Thompson, L., & Palasinski, M. (2020). Is extreme in the eye of the beholder? An experimental assessment of extremist cognitions. Journal of interpersonal violence, 0886260520958645.

  • Skeggs, B., & Yuill, S. (2016). Capital experimentation with person/a formation: how Facebook's monetization refigures the relationship between property, personhood and protest. Information, Communication & Society, 19(3), 380–396.

    Article  Google Scholar 

  • Spiro, E. S. (2016). Research opportunities at the intersection of social media and survey data. Current Opinion in Psychology, 9, 67–71.

    Article  Google Scholar 

  • Stevens, T. & Neumann, P. R. (2009). Countering online radicalization: A strategy for action. The International Centre for the Study of Radicalization and Political Violence. Retrieved from http://icsr.info/wp-content/uploads/2012/10/1236768491ICSROnlineRadicalisationReport.pdf.

  • Stier, S., Breuer, J., Siegers, P., & Thorson, K. (2020). Integrating Survey Data and Digital Trace Data: Key Issues in Developing an Emerging Field. Social Science Computer Review, 38(5), 503–516.

    Article  Google Scholar 

  • Suler, J. (2004). The online disinhibition effect. Cyberpsychology & behavior, 7(3), 321–326.

    Article  Google Scholar 

  • Sunstein, C. R. (2009). Going to extremes: How like minds unite and divide. Oxford University Press.

  • Sutherland, E. (1947). Principles of criminology. Lippincott.

  • Swartout, K. M. (2013). The company they keep: How peer networks influence male sexual aggression. Psychology of Violence, 3(2), 157.

    Article  Google Scholar 

  • Turanovic, J. J., & Young, J. T. (2016). Violent offending and victimization in adolescence: social network mechanisms and homophily. Criminology, 54(3), 487–519.

    Article  Google Scholar 

  • Van Dijck, J. (2013). The culture of connectivity: A critical history of social media. Oxford University Press.

  • Verrill, S. W. (2008). Social structure-social learning and delinquency: Mediation or moderation? LFB Scholarly Publications.

  • Victoroff, J., Adelman, J. R., & Matthews, M. (2012). Psychological factors associated with support for suicide bombing in the Muslim diaspora. Political Psychology, 33(6), 791–809.

    Article  Google Scholar 

  • Weisburd, D., Wilson, D., Wooditch, A., & Britt, C. (2020). 'Multivariate regression with multiple category nominal or ordinal measures'. In Basic Statistics in Criminology and Criminal Justice, Springer

  • Whittaker, J. (2017). International Centre for Counter-Terrorism, The Hague (ICCT). Retrieved from The Sound of an Echo: https://icct.nl/publication/the-sound-of-an-echo/

  • Wojcieszak, M. (2010). ‘Don’t talk to me’: Effects of ideologically homogeneous online groups and politically dissimilar offline ties on extremism. New Media & Society, 12(4), 637–655.

    Article  Google Scholar 

  • Wolfowicz, M., Litmanovitz, Y., Weisburd, D., & Hasisi, B. (2021a). Cognitive and behavioral radicalization: A systematic review of the putative risk and protective factors. Campbell Systematic Reviews. https://doi.org/10.1002/cl2.1174.

  • Wolfowicz, M., Litmanovitz, Y., Weisburd, D., & Hasisi, B. (2020). A field-wide systematic review and meta-analysis of putative risk and protective factors for radicalization outcomes. Journal of Quantitative Criminology, 36(3), 407–447.

  • Wolfowicz, M., Perry, S., Hasisi, B., & Weisburd, D. (2021b). Faces of radicalism: Differentiating between violent and non-violent radicals by their social media profiles. Computers in Human Behavior, 116, 106646.

  • Wood, M. A. (2017). Antisocial media and algorithmic deviancy amplification: Analysing the id of Facebook’s technological unconscious. Theoretical Criminology, 21(2), 168–185.

    Article  Google Scholar 

  • Zhu, A. Y. F., Chan, A. L. S., & Chou, K. L. (2020). The pathway toward radical political participation among young people in Hong Kong: A communication mediation approach. East Asia, 1–18.

Download references

Funding

This work was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 699824. Additional funding and assistance were received from The Federmann Cyber Security Center—Cyber Law Program at the Hebrew University of Jerusalem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wolfowicz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolfowicz, M., Weisburd, D. & Hasisi, B. Examining the interactive effects of the filter bubble and the echo chamber on radicalization. J Exp Criminol 19, 119–141 (2023). https://doi.org/10.1007/s11292-021-09471-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11292-021-09471-0

Keywords

Navigation