[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Power Splitting and Source-Relay Selection in Energy Harvesting Wireless Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper investigates the performance of an energy-harvesting (EH) relay network, where multiple sources communicate with a destination via multiple EH decode-and-forward (DF) relays. The EH relays all equip with a power splitter to divide the received signal power into two parts, which are used for signal processing and information forwarding, respectively. The power splitting ratio depicts the trade-off between the relaying energy and decoding energy. We propose an optimal power splitting and joint source-relay selection (OPS-JSRS) scheme where the optimal power-splitting ratio is obtained and the best source-relay pair is selected to transmit the message. For the purpose of comparison, we present the optimal power splitting and round-robin (OPS-RR) and the traditional power splitting and joint source-relay selection (TPS-JSRS) schemes. The exact and asymptotic closed-form expressions of outage probability for OPS-RR, TPS-JSRS and OPS-JSRS schemes are derived over Rayleigh fading channels . Numerical results show that the outage probability of OPS-JSRS scheme is lower than that of OPS-RR and TPS-JSRS schemes, explaining that the proposed OPS-JSRS scheme outperforms TPS-JSRS and OPS-RR schemes. Additionally, the outage probability performance of OPS-JSRS scheme can be improved by increasing the number of sources and/or relays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Code availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Yue, X., Liu, Y., Kang, S., Nallanathan, A., & Ding, Z. (2018). Exploiting full/half-duplex user relaying in NOMA systems. IEEE Transactions on Communications, 66(2), 560–575.

    Article  Google Scholar 

  2. Fan, L., Lei, X., Yang, N., Duong, T. Q., & Karagiannidis, G. K. (2017). Secrecy cooperative networks with outdated relay selection over correlated fading channels. IEEE Transactions on Vehicular Technology, 66(8), 7599–7603.

    Article  Google Scholar 

  3. Wu, Y., Khisti, A., Xiao, C., Caire, G., Wong, K., & Gao, X. (2018). A survey of physical layer security techniques for 5G wireless networks and challenges ahead. IEEE Journal on Selected Areas in Communications, 36(4), 679–695.

    Article  Google Scholar 

  4. Yan, P., Yang, J., Liu, M., Sun, J., & Gui, G. (2020). Secrecy outage analysis of transmit antenna selection assisted with wireless power beacon. IEEE Transactions on Vehicular Technology, 69(7), 7473–7482.

    Article  Google Scholar 

  5. Ha, D., Kim, Y., & Song, H. (2017). Cooperative transmission scheme for cell interference mitigation in wireless communication system. Wireless Personal Communications, 97, 723–732.

    Article  Google Scholar 

  6. Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42(10), 74–80.

    Article  Google Scholar 

  7. Fan, L., Yang, N., Duong, T. Q., Elkashlan, M., & Karagiannidis, G. K. (2016). Exploiting direct links for physical layer security in multiuser multirelay networks. IEEE Transactions on Wireless Communications, 15(6), 3856–3867.

    Article  Google Scholar 

  8. Zhao, R., Yuan, Y., Fan, L., & He, Y. (2017). Secrecy performance analysis of cognitive decode-and-forward relay networks in Nakagami-\(m\) fading channels. IEEE Transactions on Communications, 65(2), 549–563.

    Google Scholar 

  9. Jia, S., Zhang, J., Zhao, H., Lou, Y., & Xu, Y. (2018). Relay selection for improved physical layer security in cognitive relay networks using artificial noise. IEEE Access, 6, 64836–64846.

    Article  Google Scholar 

  10. Zhu, J., Zou, Y., Champagne, B., Zhu, W. P., & Hanzo, L. (2016). Security-reliability tradeoff analysis of multi relay-aided decode-and-forward cooperation systems. IEEE Transactions on Vehicular Technology, 65(7), 5825–5831.

    Article  Google Scholar 

  11. Zou, Y., Zhu, J., Li, X., & Hanzo, L. (2016). Relay selection for wireless communications against eavesdropping: a security-reliability trade-off perspective. IEEE Network, 30(5), 74–79.

    Article  Google Scholar 

  12. Yan, P., Zou, Y., & Zhu, J. (2018). Energy-aware multiuser scheduling for physical-layer security in energy-harvesting underlay cognitive radio systems. IEEE Transactions on Vehicular Technology, 67(3), 2084–2096.

    Article  Google Scholar 

  13. Ren, J., Hu, J., Zhang, D., Guo, H., Zhang, Y., & Shen, X. (2018). RF energy harvesting and transfer in cognitive radio sensor networks: Opportunities and challenges. IEEE Communications Magazine, 56(1), 104–110.

    Article  Google Scholar 

  14. Tuan, V., & Kong, H. (2019). Secrecy outage analysis of an untrusted relaying energy harvesting system with multiple eavesdroppers. Wireless Personal Communications, 107, 797–812.

    Article  Google Scholar 

  15. Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.

    Article  Google Scholar 

  16. Lei, H., Xu, M., Ansari, I. S., Pan, G., Qaraqe, K. A., & Alouini, M. (2017). On secure underlay MIMO cognitive radio networks with energy harvesting and transmit antenna selection. IEEE Transactions on Green Communications and Networking, 1(2), 192–203.

    Article  Google Scholar 

  17. Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767.

    Article  Google Scholar 

  18. Jameel, F., Wyne, S., & Ding, Z. (2018). Secure communications in three-step two-way energy harvesting DF relaying. IEEE Communications Letters, 22(2), 308–311.

    Article  Google Scholar 

  19. Yan, P., Zou, Y., Ding, X., & Zhu, J. (2020). Energy-aware relay selection improves security-reliability tradeoff in energy harvesting cooperative cognitive radio systems. IEEE Transactions on Vehicular Technology, 69(5), 5115–5128.

    Article  Google Scholar 

  20. Sui, D., Hu, F., Zhou, W., Shao, M., & Chen, M. (2018). Relay selection for radio frequency energy-harvesting wireless body area network with buffer. IEEE Internet of Things Journal, 5(2), 1100–1107.

    Article  Google Scholar 

  21. Huang, X., & Ansari, N. (2016). Optimal cooperative power allocation for energy-harvesting-enabled relay networks. IEEE Transactions on Vehicular Technology, 65(4), 2424–2434.

    Article  Google Scholar 

  22. Zhang, C., Du, H., & Ge, J. (2017). Energy-efficient power allocation in energy harvesting two-way AF relay systems. IEEE Access, 5, 3640–3645.

    Article  Google Scholar 

  23. Ojo, F. K., Akande, D. O., & Salleh, M. F. M. (2020). Optimal power allocation in cooperative networks with energy-saving protocols. IEEE Transactions on Vehicular Technology, 69(5), 5079–5088.

    Article  Google Scholar 

  24. Salim, M. M., Wang, D., El Atty Elsayed, H. A., Liu, Y., & Elaziz, M. A. (2020). Joint optimization of energy-harvesting-powered two-way relaying D2D communication for IoT: A rate-energy efficiency tradeoff. IEEE Internet of Things Journal, 7(12), 11735–11752.

    Article  Google Scholar 

  25. Men, J., Ge, J., Zhang, C., & Li, J. (2015). Joint optimal power allocation and relay selection scheme in energy harvesting asymmetric two-way relaying system. IET Communications, 9(11), 1421–1426.

    Article  Google Scholar 

  26. Alsharoa, A., Ghazzai, H., Kamal, A. E., & Kadri, A. (2017). Optimization of a power splitting protocol for two-way multiple energy harvesting relay system. IEEE Transactions on Green Communications and Networking, 1(4), 444–457.

    Article  Google Scholar 

  27. Heidarpour, A. R., Ardakani, M., & Tellambura, C. (2019). Multiuser diversity in network-coded cooperation: Outage and diversity analysis. IEEE Communications Letters, 23(3), 550–553.

    Article  Google Scholar 

  28. Jiang,X., Li,P., Li,B., Zou,Y., & Wang,R. (2021). Security-reliability tradeoff for friendly jammer aided multiuser scheduling in energy harvesting communications, Security and Communications Networks, 2021(5), 1–16.

  29. Bang, I., Kim, S. M., & Sung, D. K. (2017). Adaptive multiuser scheduling for simultaneous wireless information and power transfer in a multicell environment. IEEE Transactions on Wireless Communications, 16(11), 7460–7474.

    Article  Google Scholar 

  30. Wang, C., Wang, H., & Xia, X. (2015). Hybrid opportunistic relaying and jamming with power allocation for secure cooperative networks. IEEE Transactions on Wireless Communications, 14(2), 589–605.

    Article  Google Scholar 

  31. Lee, J., Wang, H., Andrews, J. G., & Hong, D. (2011). Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications, 10(2), 390–395.

    Article  Google Scholar 

  32. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Tables of integrals, series, and products (7th ed.). Academic Press.

    MATH  Google Scholar 

Download references

Funding

The subject is sponsored by the National Natural Science Foundation of P. R. China (No. 61872196, No. 61872194, No. 61902196 , No. 62102194 and No. 62102196), Scientific and Technological Support Project of Jiangsu Province (No. BE2019740, No. BK20200753 and No. 20KJB520001), Major Natural Science Research Projects in Colleges and Universities of Jiangsu Province (No. 18KJA520008), Six Talent Peaks Project of Jiangsu Province (No. RJFW-111), Natural Science Foundation of Jiangsu Province (No.BK20200753), Jiangsu Postdoctoral Science Foundation Funded Project (No. 2021K096A), Postgraduate Research and Practice Innovation Program of Jiangsu Province (No. KYCX19_0909, No. KYCX19_0911, No. KYCX20_0759, No. KYCX21_0787, No. KYCX21_0788 and No. KYCX21_0799).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Li.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Derivation of (14)

Notice that \({{\left| {\mathop h\nolimits _{SmRn} } \right| ^2}}\) follows exponential distributions with the mean of \({{\mathop \sigma \nolimits _{SmRn}^2 }}\). Thus, the cumulative density function (CDF) of \({{\left| {\mathrm{{ }}{h_{S\mathop m\nolimits ^* \mathop R\nolimits _n }}} \right| ^2}}\) can be expressed as

$$\begin{aligned} {\mathop F\nolimits _{{{\left| {\mathrm{{ }}{h_{S\mathop m\nolimits ^* \mathop R\nolimits _n }}} \right| ^2}}} (x) = \prod \limits _{m = 1}^M {\left[1 - \exp \left( - \frac{x}{{\mathop \sigma \nolimits _{SmRn}^2 }}\right)\right]} }. \end{aligned}$$
(38)

Therefore, the PDF of \({{\left| {\mathop h\nolimits _{Sm\mathrm{{*}}Rn} } \right| ^2}}\) can be obtained as

$$\begin{aligned} {\begin{array}{l} \mathrm{{ }}{f_{{{\left| {{h_{S\mathrm{{ }}{m^*}\mathrm{{ }}{R_n}}}} \right| }^2}}}(x) = \sum \limits _{i = 1}^M {\frac{1}{{\sigma _{SiRn}^2}}} \exp ( - \frac{x}{{\sigma _{SiRn}^2}})\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \times \prod \limits _{m = 1,m \ne i}^M {[1 - \exp ( - \frac{x}{{\sigma _{SmRn}^2}})]}. \end{array}} \end{aligned}$$
(39)

Denoting \({X={\left| {\mathrm{{ }}{h_{S\mathop m\nolimits ^* \mathop R\nolimits _n }}} \right| ^2}}\),the \({\mathop P\nolimits _{out,1}^{\mathrm{{TPS - JSRS}}} }\) can be rewritten as

$$\begin{aligned} {\begin{array}{*{20}{l}} {\mathrm{{ }}P_{out,1}^{\mathrm{{TPS - JSRS}}} = \Pr \left( {X> a,{{\left| {\mathrm{{ }}{h_{RnD}}} \right| }^2} > \frac{\beta }{{{\rho _n}\eta X}}} \right) }\\ {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \int _a^\infty {\exp ( - \frac{\beta }{{\sigma _{RnD}^2{\rho _n}\eta x}})\sum \limits _{i = 1}^M {\frac{1}{{\sigma _{SiRn}^2}}} \exp ( - \frac{x}{{\sigma _{SiRn}^2}})} }\\ {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \times \prod \limits _{m = 1,m \ne i}^M {[1 - \exp ( - \frac{x}{{\sigma _{SmRn}^2}})]} dx} \end{array}}, \end{aligned}$$
(40)

where \({a = \frac{{\mathop 2\nolimits ^{2R} - 1}}{{(1 - \mathop \rho \nolimits _n )\gamma }}}\). The term \({\prod \limits _{m = 1,m \ne i}^M {[1 - \exp ( - \frac{x}{{\mathop \sigma \nolimits _{SmRn}^2 }})]}}\) can be expanded as

$$\begin{aligned} {\begin{array}{l} \prod \limits _{m = 1,m \ne i}^M {[1 - \exp ( - \frac{x}{{\mathop \sigma \nolimits _{SmRn}^2 }})]} \\ \mathrm{{ = }}1\mathrm{{ + }}\sum \limits _{k = 1}^{\mathop 2\nolimits ^{M - 1} - 1} {\mathop {( - 1)}\nolimits ^{\left| {\mathop D\nolimits _k } \right| } \exp \left( - \sum \limits _{Sm \in \mathop D\nolimits _k } {\frac{x}{{\mathop \sigma \nolimits _{SmRn}^2 }}}\right )} \end{array}}, \end{aligned}$$
(41)

where \({\mathop D\nolimits _k }\) represents the k-th nonempty subset of M sources, \({\left| {\mathop D\nolimits _k } \right| }\) represents the number of elements in set \({\mathop D\nolimits _k }\). Thus, the \({\mathop P\nolimits _{out,1}^{\mathrm{{TPS - JSRS}}} }\) can be rewritten as

$$\begin{aligned} {\mathop P\nolimits _{out,1}^{\mathrm{{TPS - JSRS}}} = \mathop \Phi \nolimits _1 + \mathop \Phi \nolimits _2 } \end{aligned}$$
(42)

where

$$\begin{aligned} {\mathop \Phi \nolimits _1 = \sum \limits _{i = 1}^M {\int _a^\infty {\frac{1}{{\mathop \sigma \nolimits _{SiRn}^2 }}} } \exp ( - \frac{x}{{\mathop \sigma \nolimits _{SiRn}^2 }})\exp ( - \frac{\beta }{{\mathop {\mathop \sigma \nolimits _{RnD}^2 \rho }\nolimits _n \eta x}})dx }, \end{aligned}$$
(43)

and

$$\begin{aligned} {\begin{array}{l} \mathop \Phi \nolimits _2 = \sum \limits _{i = 1}^M {\frac{1}{{\mathop \sigma \nolimits _{SiRn}^2 }}\int _a^\infty {\sum \limits _{k = 1}^{\mathop 2\nolimits ^{M - 1} - 1} {\mathop {( - 1)}\nolimits ^{\left| {\mathop D\nolimits _k } \right| } \exp ( - \sum \limits _{Sm \in \mathop D\nolimits _k } {\frac{x}{{\mathop \sigma \nolimits _{SmRn}^2 }}} )} } } \\ \;\;\;\;\;\;\;\;\;\;\;\; \times \exp ( - \frac{x}{{\mathop \sigma \nolimits _{SiRn}^2 }})\exp ( - \frac{\beta }{{\mathop {\mathop \sigma \nolimits _{RnD}^2 \rho }\nolimits _n \eta x}})dx \end{array}}. \end{aligned}$$
(44)

Using the Maclaurin series expansion, we have

$$\begin{aligned} {\exp \left( - \frac{\beta }{{\mathop {\mathop \sigma \nolimits _{RnD}^2 \rho }\nolimits _n \eta x}}\right) = \sum \limits _{u = 0}^\infty {\frac{{\mathop {( - 1)}\nolimits ^u \mathop \beta \nolimits ^u }}{{u!\mathop \sigma \nolimits _{RnD}^{2u} \mathop \rho \nolimits _n^u \mathop \eta \nolimits ^u \mathop x\nolimits ^u }}} }. \end{aligned}$$
(45)

Substituting (45) into (43),we can obtain the \({\mathop \Phi \nolimits _1 }\) as (46) at the top of following page, where \({Ei(x) = \int _x^\infty {\frac{{\mathop e\nolimits ^t }}{t}} dt}\)

$$\begin{aligned} {\begin{array}{l} \mathop \Phi \nolimits _1 = \sum \limits _{i = 1}^M {\frac{1}{{\mathop \sigma \nolimits _{SiRn}^2 }}\int _a^\infty {\exp ( - \frac{x}{{\mathop \sigma \nolimits _{SiRn}^2 }})} } dx - \sum \limits _{i = 1}^M {\frac{\beta }{{\mathop \sigma \nolimits _{SiRn}^2 \mathop \sigma \nolimits _{RnD}^2 \mathop \rho \nolimits _n \eta }}\int _a^\infty {\frac{1}{x}\exp ( - \frac{x}{{\mathop \sigma \nolimits _{SiRn}^2 }})} } dx\\ \;\;\;\;\;\;\;\;\;\;+ \sum \limits _{i = 1}^M {\frac{1}{{\mathop \sigma \nolimits _{SiRn}^2 }}\sum \limits _{u = 2}^\infty {\frac{{\mathop {( - 1)}\nolimits ^u \mathop \beta \nolimits ^u }}{{u!\mathop \sigma \nolimits _{RnD}^{2u} \mathop \rho \nolimits _n^u \mathop \eta \nolimits ^u }}} } \mathop \Phi \nolimits _{1,u} \\ \;\;\;\;\; = \sum \limits _{i = 1}^M {\exp ( - \frac{a}{{\mathop \sigma \nolimits _{SiRn}^2 }})} - \sum \limits _{i = 1}^M {\frac{\beta }{{\mathop \sigma \nolimits _{SiRn}^2 \mathop \sigma \nolimits _{RnD}^2 \mathop \rho \nolimits _n \eta }}} Ei(\frac{a}{{\mathop \sigma \nolimits _{SiRn}^2 }}) + \sum \limits _{i = 1}^M {\frac{1}{{\mathop \sigma \nolimits _{SiRn}^2 }}\sum \limits _{u = 2}^\infty {\frac{{\mathop {( - 1)}\nolimits ^u \mathop \beta \nolimits ^u }}{{u!\mathop \sigma \nolimits _{RnD}^{2u} \mathop \rho \nolimits _n^u \mathop \eta \nolimits ^u }}} } \mathop \Phi \nolimits _{1,u} \end{array}} \end{aligned}$$
(46)

and

$$\begin{aligned} \begin{array}{*{20}{l}} {{\Phi _{1,u}} = \int _a^\infty {\frac{1}{{\mathrm{{ }}{x^u}}}} \exp ( - \frac{x}{{\sigma _{SiRn}^2}})dx}\\ {\;\;\;\;\;\;\;\;\mathrm{{ = }}\frac{1}{{\mathrm{{ }}{a^{u - 1}}}}\sum \limits _{k = 0}^{u - 2} {\frac{{{{(\mathrm{{ }} - \mathrm{{ }}1)}^k}\mathrm{{ }}{a^k}}}{{\sigma _{SiRn}^{2k}(u - 1)(u - 2) \cdots (u - k + 1)}}} \exp ( - \frac{a}{{\sigma _{SiRn}^2}})}\\ {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + {{(\mathrm{{ }} - \mathrm{{ }}1)}^u}\frac{1}{{(u - 1)!\sigma _{SiRn}^{2(u - 1)}}}Ei( - \frac{a}{{\sigma _{SiRn}^2}})} \end{array}. \end{aligned}$$
(47)

Similarly, substituting (45) into (44), we can obtain the \({\mathop \Phi \nolimits _2 }\) as

$$\begin{aligned} {\begin{array}{l} \mathop \Phi \nolimits _2 = \sum \limits _{i = 1}^M {\sum \limits _{k = 1}^{\mathop 2\nolimits ^{M - 1} - 1} {\frac{{\mathop {( - 1)}\nolimits ^{\left| {\mathop D\nolimits _k } \right| } }}{{\mathop {b\sigma }\nolimits _{SiRn}^2 }}\exp ( - ab)} } \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;- \sum \limits _{i = 1}^M {\sum \limits _{k = 1}^{\mathop 2\nolimits ^{M - 1} - 1} {\frac{{\mathop {( - 1)}\nolimits ^{\left| {\mathop D\nolimits _k } \right| } \beta Ei(ab)}}{{\mathop {\mathop \rho \nolimits _n \eta \mathop \sigma \nolimits _{RnD}^2 \sigma }\nolimits _{SiRn}^2 }}} } \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;+ \sum \limits _{i = 1}^M {\sum \limits _{k = 1}^{\mathop 2\nolimits ^{M - 1} - 1} {\sum \limits _{u = 2}^\infty {\frac{{\mathop {( - 1)}\nolimits ^{\left| {\mathop D\nolimits _k } \right| + u} \mathop \beta \nolimits ^u }}{{\mathop \sigma \nolimits _{SiRn}^2 u!\mathop \sigma \nolimits _{RnD}^{2u} \mathop {\mathop \rho \nolimits _n }\nolimits ^u \mathop \eta \nolimits ^u }}} } } \mathop \Phi \nolimits _{2,u} \end{array} }. \end{aligned}$$
(48)

where \({b = \frac{1}{{\mathop \sigma \nolimits _{SiRn}^2 }} + \sum \limits _{Sm \in \mathop D\nolimits _k } {\frac{1}{{\mathop \sigma \nolimits _{SmRn}^2 }}} }\) and

$$\begin{aligned} {\begin{array}{*{20}{l}} {{\Phi _{2,u}} = \int _a^\infty {\frac{1}{{\mathrm{{ }}{x^u}}}} \exp ( - bx)dx}\\ {\;\;\;\;\;\;\;\;\mathrm{{ = }}\frac{1}{{\mathrm{{ }}{a^{u - 1}}}}\sum \limits _{k = 0}^{u - 2} {\frac{{{{(\mathrm{{ }} - \mathrm{{ }}1)}^k}\mathrm{{ }}{a^k}\mathrm{{ }}{b^k}}}{{(u - 1)(u - 2) \cdots (u - k + 1)}}} \exp ( - ab)}\\ {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + {{(\mathrm{{ }} - \mathrm{{ }}1)}^u}\frac{{\mathrm{{ }}{b^{u - 1}}}}{{(u - 1)!}}Ei( - ab)} \end{array}}. \end{aligned}$$
(49)

Substituting (46) and (48) into (42), \({\mathop P\nolimits _{out,1}^{\mathrm{{TPS - JSRS}}} }\) can be obtained as (14).

Derivation of (30)

Denoting \({Y = {\left| {\mathrm{{ }}{h_{RnD}}} \right| ^2}}\), the \({\mathop P\nolimits _{out}^{\mathrm{{OPS - JSRS}}} }\) can be rewritten as

$$\begin{aligned} {\begin{array}{l} \mathop P\nolimits _{out}^{\mathrm{{OPS - JSRS}}} = \prod \limits _{n = 1}^N {\int _0^\infty {\mathop f\nolimits _Y (y)\mathop F\nolimits _{{{\left| {\mathrm{{ }}{h_{S\mathop m\nolimits ^* \mathop R\nolimits _n }}} \right| }^2}} } } (\frac{\alpha }{y} + \alpha \eta )dy\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \prod \limits _{n = 1}^N {\int _0^\infty {\frac{1}{{\sigma _{RnD}^2}}\exp ( - \frac{y}{{\sigma _{RnD}^2}})} } \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \times \prod \limits _{m = 1}^M {[1 - \exp ( - \frac{\alpha }{{\sigma _{SmRn}^2y}} - \frac{{\alpha \eta }}{{\sigma _{SmRn}^2}})]} dy \end{array}}. \end{aligned}$$
(50)

The term \({\prod \limits _{m = 1}^M {[1 - \exp ( - \frac{\alpha }{{\sigma _{SmRn}^2y}} - \frac{{\alpha \eta }}{{\sigma _{SmRn}^2}})]}}\) can be expanded as

$$\begin{aligned} {\begin{array}{l} \prod \limits _{m = 1}^M {[1 - \exp ( - \frac{\alpha }{{\sigma _{SmRn}^2y}} - \frac{{\alpha \eta }}{{\sigma _{SmRn}^2}})]} \\ = 1 + \sum \limits _{j = 1}^{\mathop 2\nolimits ^M - 1} {\mathop {( - 1)}\nolimits ^{\left| {\mathop A\nolimits _j } \right| } } \exp ( - \sum \limits _{Sm \in \mathop A\nolimits _j } {(\frac{\alpha }{{\sigma _{SmRn}^2y}} + \frac{{\alpha \eta }}{{\sigma _{SmRn}^2}})} ) \end{array}}. \end{aligned}$$
(51)

where \({\mathop A\nolimits _j }\) represents the j-th nonempty subset of M sources, \({\left| {\mathop A\nolimits _j } \right| }\) represents the number of elements in set \({\mathop A\nolimits _j }\). Substituting (51) into (50), we can obtain the outage probability of OPS-JSRS scheme \({\mathop P\nolimits _{out}^{\mathrm{{OPS - JSRS}}} }\) as (30).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Li, P. & Wang, R. Power Splitting and Source-Relay Selection in Energy Harvesting Wireless Network. Wireless Pers Commun 124, 2141–2160 (2022). https://doi.org/10.1007/s11277-021-09449-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09449-1

Keywords

Navigation