[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Visual Speech Recognition Using Optical Flow and Hidden Markov Model

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The present work proposes audio-visual speech recognition with the use of Gammatone frequency cepstral coefficient (GFCC) and optical flow (OF) features with Hindi speech database. The OF refers to the distribution of apparent velocities of brightness pattern movements in an image. In this technique, OF is determined without extracting the location and contours of pair of lips of individual speaker. The visual features as horizontal component and vertical components of flow velocities have been calculated. Furthermore, the visual features are combined with audio features using early integration method followed by classification using hidden Markov model. The isolated Hindi digits were evaluated for their recognition performance using GFCC features not only in clean environment but also tested under noisy environment and compared with existing Mel frequency cepstral coefficient (MFCC) features. The GFCC shows almost comparable result with MFCC in clean environment; however, its performance goes down in noisy environment. Futhermore, the visual features obtained by the OF analysis when combine with GFCC audio features give significant improvement of ~ 12%, ~ 12%, and ~ 14% at different SNRs (5 dB, 10 dB, and 20 dB, respectively) in recognition performance under noisy environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sharma, U., Maheshkar, S., & Mishra, A. N. (2015). Study of robust feature extraction techniques for speech recognition system. In 1st international conference on futuristic trend in computational analysis and knowledge management ABLAZE 2015 (pp. 654–658). Greater Noida.

  2. Sukale, S., Borde, P., Gornale, S., & Yannawar, P. (2016). Recognition of isolated marathi words from side pose for multi-pose audio visual speech recognition. ADBU-Journal of Engineering Technology, 5, 0051606.

    Google Scholar 

  3. Shaikh, A. A., Kumar, D. K., & Gubbi, J. (2011). Visual speech recognition using optical flow and support vector machines. International Journal of Computational Intelligence and Applications, 10(2), 167–187.

    Article  Google Scholar 

  4. Memon, I., Chen, L., Majid, A., Lv, M., Hussain, I., & Chen, G. (2015). Travel recommendation using geo-tagged photos in social media for tourist. Wireless Personal Communications, 80, 1347–1362.

    Article  Google Scholar 

  5. Memon, M. H., Li, J. P., Memon, I., & Arain, Q. A. (2017). GEO matching regions: multiple regions of interests using content based image retrieval based on relative locations. Multimedia Tools and Applications, 76(14), 377–411.

    Article  Google Scholar 

  6. Arain, Q. A., Memon, H., Memon, I., Memon, M. H., Shaikh, R. A., & Ali Mangi, F. (2017). Intelligent travel information platform based on location base services to predict user travel behavior from user-generated GPS traces. International Journal of Computers and Applications. https://doi.org/10.1080/1206212X.2017.1309222.

    Google Scholar 

  7. Shaikh, R. A., Mmon, I., Mahar, J. A., & Shaikh, H. (2016). Database technology on the web: Query interface determining algorithm for deep web based on HTML features and hierarchical clustering. Sindh University Research Journal, 48(1), 145–150.

    Google Scholar 

  8. Arain, Q. A., Uqaili, M. A., Deng, Z., Memon, I., Jiao, J., Shaikh, M. A., et al. (2016). Clustering based energy efficient and communication protocol for multiple mix-zones over road networks. Wireless Personal Communications. https://doi.org/10.1007/s11277-016-3900-x.

    Google Scholar 

  9. Potamianos, G., Neti, C., Luettin, J., & Matthews, I. (2004). Audio-visual automatic speech recognition: An overview. In G. Bailly, E. V. Bateson, & P. Perrier (Eds.), Issues in visual and audio-visual speech processing. Cambridge: MIT Press.

    Google Scholar 

  10. Zhou, Z., Guoying, Z., Xiaopeng, H., & Matti, P. (2014). A review of recent advances in visual speech decoding. Image and Vision Computing, 32(9), 590–605.

    Article  Google Scholar 

  11. Borde, P., Varpe, A., Manza, R., & Yannawar, P. (2014). Recognition of isolated words using Zernike and MFCC features for audio visual speech recognition. International Journal of Speech Technology, 18(2), 167–175.

    Article  Google Scholar 

  12. Maurya, A., Kumar, D., & Agarwal, R. K. (2018). Speaker recognition for Hindi speech signal using MFCC-GMM approach. Procedia Computer Science, 125, 880–887.

    Article  Google Scholar 

  13. Noda, K., Yamaguchi, Y., Nkadai, K., Ouno, H. G., & Ogata, T. (2015). Audio-visual speech recognition using deep learning. Applied Intelligence, 42(4), 722–737.

    Article  Google Scholar 

  14. Song, D., Kim, C., & Park, S. K. (2018). A multi-temporal framework for high level activity analysis: Violent event detection in visual surveillance. Information Sciences. https://doi.org/10.1016/j.ins.2018.02.065.

    MathSciNet  Google Scholar 

  15. Iwano, K., Tamura, S., & Furui, S. (2001). Bimodal speech recognition using lip movement measured by optical-flow analysis. In Proceedings of international workshop on hands-free speech communication HSC 2001 (pp. 187–190). Kyoto.

  16. Yoshinaga, T., Tamura, S., Iwano, K., & Furui, S. (2003). Audio-visual speech recognition using lip movement extracted from side-face images. In International conference on audio-visual speech processing AVSP-2003. St. Jorioz.

  17. Sharma, U., Maheshkar, S., & Mishra, A. N. (2017). Hindi numerals classification using Gammatone frequency cepstral coefficients features. In Proceedings of 4th international conference on computing for sustainable global development INDIACom-2017 (pp. 2171–2175). New Delhi: IEEE Conference.

  18. Mishra, A. N., Chandra, M., Biswas, A., & Sharan, S. N. (2011). Robust features for connected Hindi digits recognition. International Journal of Signal Processing, Image Processing and Pattern Recognition, 4(2), 79–90.

    Google Scholar 

  19. Shao, Y., Jin, Z., & Wang, D. (2009). An auditory-based features for robust speech recognition. In IEEE international conference on acoustic speech and signal processing. Taipei: Taipei International Convention Center.

  20. Shaikh, R. A., Li, J. P., Khan, A., Dep, S., Kumar, K., & Memon, I. (2014). Contemporary integration of content based image retrieval. In 11th conference on wavelet active media technology and information processing (ICCWAMTIP). Chengdu.

  21. Memon, M. H., Li, J. P., Memon, I., Shaikh, R. A., Khan, A., & Deep, S. (2014). Unsupervised feature approach for content based image retrieval using principal component analysis. In 11th conference on wavelet active media technology and information processing (ICCWAMTIP). Chengdu.

  22. Memon, M. H., Li, J. P., Memon, I., Shaikh, R. A., Khan, A., & Deep, S. (2014). Content based image retrieval based on geo-location driven image tagging on the social web. In: 11th conference on wavelet active media technology and information processing (ICCWAMTIP). Chengdu.

  23. Horn, B. K. P., & Schunck, B. G. (1981). Determining optical flow. Artificial Intelligence, 17(1–3), 185–203.

    Article  Google Scholar 

  24. Chitu, A. G., & Rothkrantz, L. J. M. (2009). Visual speech recognition automatic system for lip reading of Dutch. Information Technologies and Control, 3, 2–9.

    Google Scholar 

  25. Mishra, A. N., Chandra, M., Biswas, A., & Sharan, S. N. (2013). Hindi phoneme-viseme recognition from continuous speech. International Journal of Signal and Imaging Systems Engineering, 6(3), 164–171.

    Article  Google Scholar 

  26. Koprinska, I., & Carrato, S. (2001). Temporal video segmentation: A survey. Signal Processing: Image Communication, 16, 477–500.

    Google Scholar 

  27. Ooi, W. C., Jeon, C., Kim, K., Ko, H., & Han, D. K. (2009). Effective lip localization and tracking for achieving multimodal speech recognition. Multisensor Fusion and Integration for Intelligent Systems, Lecture Notes in Electrical Engineering, 35(1), 33–43.

    Article  Google Scholar 

  28. Luettin, J., Tracker, N. A., & Beet, S. W. (1995). Active shape models for visual speech feature extraction. Electronic system group report no. 95/44, University of Sheffield, UK.

  29. Eveno, N., Caplier, A., & Coulon, P. Y. (2001). A new color transformation for lips segmentation. In IEEE workshop on multimedia signal processing (MMSP’01). Cannes.

  30. Eveno, N., Caplier, A., & Coulon, P. Y. (2004). Accurate and quasi-automatic lip tracking. IEEE, Transactions on Circuit and Systems for Video Technology, 14(5), 706–715.

    Article  Google Scholar 

  31. Rabiner, L. R., & Juang, B. H. (1993). Fundamental of speech recognition. Upper Saddle River: Prentice Hall.

    Google Scholar 

  32. Young, S. J., & Woodland, P. C. (1993). The use of state tying in continuous speech recognition. In 3rd European conference on speech communication and technology EUROSPEECH 93 (pp. 2203–2206). Berlin.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usha Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, U., Maheshkar, S., Mishra, A.N. et al. Visual Speech Recognition Using Optical Flow and Hidden Markov Model. Wireless Pers Commun 106, 2129–2147 (2019). https://doi.org/10.1007/s11277-018-5930-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5930-z

Keywords

Navigation