[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Proposed Scheme for Maximization of Minimal Throughput in MIMO Underlay Cognitive Radio Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In cognitive radio networks (CRNs), the most critical issue is to increase the secondary throughput while assuring the quality of service of primary users (PUs). In this paper, a proposed optimal power allocation scheme using genetic algorithm is suggested for a multiple-input-multiple-output (MIMO) system in CRN. This scheme is used to maximize the secondary throughput under interference constraints in a system model of multiple secondary user (SU) pairs coexisting with multiple PU pairs in an underlay spectrum sharing network. For the sake of comparison, the minimal throughput among all SUs is compared with other power allocation schemes, namely, maximum–minimum-throughput-based power assignment (MMTPA) and equal power assignment (EPA). Simulation results show that, our proposed scheme gives the maximum–minimum secondary throughput among all other stated schemes. Moreover, unlike MMTPA, our proposed approach maximizes the throughput of all SUs not only the minimal throughput among all SUs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mitola, J., & Maguire, G. Q., Jr. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  2. Venkataraman, H., & Muntean, G.-M. (2012). Cognitive radio and its application for next generation cellular and wireless networks., Lecture notes in electrical engineering, 116 Berlin: Springer.

    Book  Google Scholar 

  3. Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.

    Article  MATH  Google Scholar 

  4. Sakran, H., Shokair, M., El-Rabaie, E.-S., & El-Azm, A. A. (2011). Three bits softened decision scheme in cooperative spectrum sensing among cognitive radio networks. In 28th National radio science conference (NRSC), Cairo, April 26–28, 2011 (pp. 1–9).

  5. Sakran, H., & Shokair, M. (2011). Hard and softened combination for cooperative spectrum sensing over imperfect channels in cognitive radio networks. Telecommunications Systems, 52(1), 61–71.

    Article  Google Scholar 

  6. Benaya, A. M., Shokair, M., El-Rabaie, E.-S., & Elkordy, M. F. (2014). Relay-based throughput maximization in multiple antennas cognitive radio networks. In 31st National radio science conference (NRSC), Cairo, April 28–30, 2014 (pp. 116–123).

  7. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  8. Sakran, H., Shokair, M., Nasr, O., El-Rabaie, E.-S., & El-Azm, A. A. (2012). Proposed relay selection scheme for physical layer security in cognitive radio networks. IET Communications, 6(16), 2676–2687.

    Article  MathSciNet  Google Scholar 

  9. Yang, Li, & Nosratinia, A. (2013). Spectrum sharing with distributed relay selection and clustering. IEEE Transactions on Communications, 61(1), 53–62.

    Article  Google Scholar 

  10. Xin, K., Liang, Y.-C., Garg, H. K., & Zhang, L. (2009). Sensing-based spectrum sharing in cognitive radio networks. IEEE Transactions on Vehicular Technology, 58(8), 4649–4654.

    Article  Google Scholar 

  11. Benaya, A. M., Shokair, M., El-Rabaie, E.-S., & Elkordy, M. F. (2015). Optimal power allocation for sensing-based spectrum sharing in MIMO cognitive relay networks. Wireless Personal Communications, 82(4), 2695–2707.

    Article  Google Scholar 

  12. Wang, J. T. (2014). Maximum–minimum throughput for MIMO systems in cognitive radio networks. IEEE Transactions on Vehicular Technology, 63(1), 217–224.

    Article  Google Scholar 

  13. Tsoulos, G. (2006). MIMO system technology for wireless communications., Electrical engineering and applied signal processing series Florida: CRC Press.

    Book  Google Scholar 

  14. Farrokhi, F. R., Foschini, G. J., Lozano, A., & Valenzuela, R. A. (2001). Link-optimal space-time processing with multiple transmit and receive antennas. IEEE Communications Letters, 5(3), 85–87.

    Article  Google Scholar 

  15. Song, Y., & Blostein, S. D. (2002). MIMO channel capacity in co-channel interference. In Proceedings 21st Biennial symposium on communication, Kingston, Canada (pp. 220–224).

  16. Webb, M., Beach, M., & Nix, A. (2004). Capacity limits of MIMO channels with co-channel interference. In Proceedings IEEE VTC-Spring (pp. 703–707).

  17. Jindal, N., & Goldsmith, A. (2005). Dirty-paper coding versus TDMA for MIMO broadcast channels. IEEE Transactions on Information Theory, 51(5), 1783–1794.

    Article  MathSciNet  MATH  Google Scholar 

  18. Sivanandam, S. N., & Deepa, S. N. (2008). Introduction to genetic algorithms. Berlin: Springer.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Benaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benaya, A.M., Rosas, A.A. & Shokair, M. Proposed Scheme for Maximization of Minimal Throughput in MIMO Underlay Cognitive Radio Networks. Wireless Pers Commun 96, 5947–5958 (2017). https://doi.org/10.1007/s11277-017-4456-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4456-0

Keywords

Navigation