[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Mobile-to-Mobile Wideband MIMO Channel Realization by Using a Two-Ring Geometry-Based Stochastic Scattering Model

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a geometry-based stochastic scattering model (GBSSM) for wideband multiple-input multiple-output mobile-to-mobile (M2M) isotropic scattering fading channels is proposed. The model is based on a two-ring scattering model which can be applied for the line-of-sight (LOS) and non-LOS scenarios by considering the single- and double-bounced components. The target of developing the GBSSM is to realize the channel in typical environments for future internet-of-thing networks such as shopping malls, logistics centers and so on to be used in the link and system level simulations in M2M new radio systems. The channel realization in this paper is more straight forward and concise to study the channel characteristics compare with the too complicated analytical solutions available so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hartenstein, H., & Laberteaux, K. P. (2008). A tutorial survey on vehicular ad hoc networks. IEEE Communications Magazine, 46(6), 164–171.

    Article  Google Scholar 

  2. Kojima, F., Harada, H., & Fujise, M. (2001). Inter-vehicle communication network with an autonomous relay access scheme. IEICE Transactions on Communications, E84-B(3), 566–575.

    Google Scholar 

  3. Lakkavalli, S., Negi, A., & Singh, S. (2003). Stretchable architectures for next generation cellular networks. In Proceedings of the ISART 03 (pp. 59–65), Colorado, USA.

  4. Bakhshi, R. S., & Shahtalebi, K. (2012). Modeling and simulation of MIMO mobile-to-mobile wireless fading channels. International Journal on Antennas Propagation, 2012, Article ID 846153. doi:10.1155/2012/846153

  5. Akki, A. S., & Haber, F. (1986). A statistical model of mobile-to-mobile land communication channel. IEEE Transactions on Vehicular Technology, VT-35(1), 2–10.

    Article  Google Scholar 

  6. Wang, R., & Cox, D. (2002). Channel modeling for ad hoc mobile wireless networks. In Proceedings of the IEEE VTC (vol. 1, pp. 21–25), Birmingham, AL.

  7. Zajić, A. G., & Stüber, G. L. (2006). A new simulation model for mobile-tomobile Rayleigh fading channels. In Proceedings of the IEEE WCNC (vol. 3, pp. 1266–1270), Las Vegas, NV.

  8. Maurer, J., Fügen, T., & Wiesbeck, W. (2002). Narrow-band measurement and analysis of the intervehicle transmission channel at 5.2 GHz. In Proceedings of the IEEE VTC (pp. 1274–1278), Birmingham, AL.

  9. Acosta & Ingram, M. A. (2006). Model development for the wideband expressway vehicle-to-vehicle 2.4 GHz channel. In Proceedings of the IEEE WCNC (vol. 3, pp. 1283–1288), Las Vegas, NV.

  10. Pätzold, M., Hogstad, B. O., Youssef, N., & Kim, D. (2005). A MIMO mobile-to-mobile channel model: Part I—The reference model. In Proceedings of the IEEE PIMRC (vol. 1, pp. 573–578), Berlin, Germany.

  11. Hogstad, O., Pätzold, M., Youssef, N., & Kim, D. (2005). A MIMO mobile-to-mobile channel model: Part II—The simulation model. In Proceedings of the IEEE PIMRC (vol. 1, pp. 562–567), Berlin, Germany.

  12. Zajić, A. G., & Stüber, G. L. (2008). Space-time correlated mobile-to-mobile channels: Modelling and simulation. IEEE Transactions on Vehicular Technology, 57(2), 715–726.

    Article  Google Scholar 

  13. Cheng, X., Wang, C.-X., Laurenson, D. I., Salous, S., & Vasilakos, A. V. (2009). An adaptive geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels. IEEE Transactions on Wireless Communications, 8(9), 4824–4835.

    Article  Google Scholar 

  14. Cheng, X., Yao, Q., Miao, W., Wang, C.-X., Song, L., & Jiao, B. (2013). Wideband channel modeling and intercarrier interference cancellation for vehicle-to-vehicle communication systems. IEEE Journal on Selected Areas in Communications, 31(9), 434–447.

    Article  Google Scholar 

  15. Zajić, A. G., & Stüber, G. L. (2008). Three-dimensional modeling, simulation, and capacity analysis of space-time correlated mobile-to-mobile channels. IEEE Transactions on Wireless Communications, 8(3), 1260–1274.

    Google Scholar 

  16. Zajić, A. G., Stüber, G. L., Pratt, T. G., & Nguyen, S. (2009). Wide-band MIMO mobile-to-mobile channels: Geometry-based statistical modeling with experimental verification. IEEE Transactions on Vehicular Technology, 58(2), 517–534.

    Article  Google Scholar 

  17. Zajić, A. G., & Stüber, G. L. (2009). Three-dimensional modeling and simulation of wideband mimo mobile-to-mobile channels. IEEE Wireless Communications, 8(3), 1260–1274.

    Article  Google Scholar 

  18. Yuan, Y., Cheng, X., Wang, C.-X., Ai, B., & Laurenson, D. I. (2014). Novel 3D geometry-based stochastic models for non-isotropic MIMO vehicle-to-vehicle channels. IEEE Transactions on Wireless Communications, 13(1), 298–308.

    Article  Google Scholar 

  19. Talha, B., Pätzold, M. (2011). A geometrical three-ring-based model for MIMO mobile-to-mobile fading channels in cooperative networks. EURASIP Journal on Advances in Signal Processing, 2011, Article ID 892871. doi:10.1155/2011/892871

  20. Pätzold, M., & Hogstad, B. O. (2006). A wideband space-time MIMO channel simulator based on the geometrical one-ring model. In IEEE 64th Vehicular Technology Conference, 2006 (VTC-2006) (pp. 1–6).

  21. Pätzold, M., Hogstad, B. O., & Youssef, N. (2008). Modeling, analysis, and simulation of MIMO mobile-to-mobile fading channels. Proceedings of the IEEE Transactions on Wireless Communications, 7(2), 510–519.

    Article  Google Scholar 

  22. Nurmela, V., Karttunen, A., & Roivainen, A. (2014). Initial channel models based on measurements. Deliverable D1.2, V1.0, ICT-317669, METIS project. http://www.metis2020.com

  23. Pätzold, M. (2012). Mobile radio channels (2nd ed.). New York: Wiley.

    Google Scholar 

  24. Pätzold, M., & Hogstad, B. O. (2005). Design and performance of MIMO channel simulators derived from the two-ring scattering model. In Proceedings of the 14th IST mobile (pp. 19–23).

  25. Narandzic, M., Schneider, C., Thoma, R., Jamsa, T., Kyosti, P., & Zhao, X. (2007). Comparison of SCM, SCME, and WINNER channel models. In Proceedings of the IEEE (VTC 2007) (pp. 413–417), Dublin, Ireland.

  26. Pätzold, M., Szczepanski, A., & Youssef, N. (2002). Methods for modeling of specified and measured multipath power-delay profiles. IEEE Transactions on Vehicular Technology, 51(5), 978–988.

    Article  Google Scholar 

  27. Zhao, X., Kivinen, J., Vainikainen, P., & Skog, K. (2003). Characterization of Doppler Spectra for Mobile Communications at 5.3 GHz. IEEE Transactions on Vehicular Technology, 52(1), 14–21.

    Article  Google Scholar 

  28. Cho, Y. S., Kim, J., Yang, W. Y., & Kang, C. G. (2010). MIMO–OFDM wireless communications with MATLAB. New York: Wiley.

    Book  Google Scholar 

  29. Stüber, G. L. (2001). Principles of mobile communication (2nd ed.). Boston, MA: Kluwer.

    Google Scholar 

Download references

Acknowledgments

This work were supported by the National Nature Science Foundation of China (NSFC) under Grant No. 61372051, the 863 Project No. 2014AA01A701, and supported also by the Fundamental Research Funds for the Central Universities (2014XS04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Liang, X., Li, S. et al. Mobile-to-Mobile Wideband MIMO Channel Realization by Using a Two-Ring Geometry-Based Stochastic Scattering Model. Wireless Pers Commun 84, 2445–2465 (2015). https://doi.org/10.1007/s11277-015-2714-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2714-6

Keywords

Navigation