[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Experimental Characterization and Analysis for Ultra Wideband Outdoor Channel

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper reports on an experimental characterization of ultra wideband (UWB) outdoor channel over a frequency range of 3.1–5.3 GHz. Time domain measurements were conducted for line-of-sight scenarios. The acquired measurement data are characterized in terms of path-loss exponents, root mean square (RMS) delay spread, K-factor and channel capacity. Results show that the path-loss exponents range between 1.4 and 2.1 for the log-distance propagation model and the RMS delay spread was found to be between 1.2 and 3.4 ns. Different statistical distributions for the delay spread were also investigated. Results of the statistical analysis also show that the correlation between RMS delay spread and transmitter receiver separation distance is very low. The small-scale fading analysis indicated that UWB signals experience Rician fading, where the maximum value of K-factor is 11 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hashemi, H. (1993). Indoor radio propagation channel. Proceedings of the IEEE, 81, 943–968. doi:10.1109/5.231342.

    Article  Google Scholar 

  2. Abouraddy, A. F., & Elnoubi, S. M. (2000). Statistical modeling of the indoor radio channel at 10 GHz through propagation measurements Part I: Narrow-band measurements and modeling. IEEE Transactions on Vehicular Technology, 49, 1491–1507. doi:10.1109/25.892532.

    Article  Google Scholar 

  3. Athanasiadou, G. E., & Nix, A. R. (2000). A novel 3-D indoor ray-tracing propagation model: the path generator and evaluation of narrow-band and wide-band predictions. IEEE Transactions on Vehicular Technology, 49, 1152–1168. doi:10.1109/25.875222.

    Article  MATH  Google Scholar 

  4. Joshi, G. G., Dietrich, C. B., Anderson, C. R., et al. (2005). Near-ground channel measurements over line-of-sight and forested paths. IEE Proceedings Microwaves, Antennas and Propagation, 152, 589–596. doi:10.1049/ip-map:20050013.

    Article  Google Scholar 

  5. Kivinen, J., Zhao, X., & Vainikainen, P. (2001). Empirical characterization of wideband indoor radio channel at 5.3 GHz. IEEE Transactions on Antennas and Propagation, 49, 1192–1203. doi:10.1109/8.943314.

    Article  Google Scholar 

  6. Liang, J., & Liang, Q. (2010). Outdoor propagation channel modeling in foliage environment. IEEE Transactions on Vehicular Technology, 59, 2243–2252. doi:10.1109/TVT.2010.2043697.

    Article  MATH  Google Scholar 

  7. Skentos, N. D., Marousis, A. D., Kanatas, A. G., & Constantinou, P. (2007). Experimental multipath component characteristics for short range urban propagation environments. Eur Trans Telecommun, 18, 595–603. doi:10.1002/ett.1240.

    Article  MATH  Google Scholar 

  8. Yu, K., Bengtsson, M., Ottersten, B., et al. (2004). Modeling of wide-band MIMO radio channels based on NLoS indoor measurements. IEEE Transactions on Vehicular Technology, 53, 655–665. doi:10.1109/TVT.2004.827164.

    Article  Google Scholar 

  9. Molisch, A. F. (2009). Ultra-wide-band propagation channels. Proceedings of the IEEE, 97, 353–371. doi:10.1109/JPROC.2008.2008836.

    Article  Google Scholar 

  10. Noori, N., Karimzadeh-Baee, R., & Abolghasemi, A. (2009). An empirical ultra wideband channel model for indoor laboratory environments. Radioengineering, 18, 68–74.

    Google Scholar 

  11. Lee, J.-Y. (2010). UWB channel modeling in roadway and indoor parking environments. IEEE Transactions on Vehicular Technology, 59, 3171–3180. doi:10.1109/TVT.2010.2044821.

    Article  Google Scholar 

  12. Irahhauten, Z., Janssen, G., Nikookar, H., et al. (2006). UWB channel measurements and results for office and industrial environments. In 2006 IEEE international conference on ultra-wideband (pp. 225–230). IEEE.

  13. Donlan, B. M., McKinstry, D. R., & Buehre, R. M. (2006). The UWB indoor channel: Large and small scale modeling. IEEE Transactions on Wireless Communications, 5, 2863–2873. doi:10.1109/TWC.2006.04482.

    Article  Google Scholar 

  14. Nkakanou, B., Delisle, G. Y., & Hakem, N. (2011). Experimental characterization of ultra-wideband channel parameter measurements in an underground mine. Journal of Computer Networks and Communications, 2011, 1–7. doi:10.1155/2011/157596.

    Article  MATH  Google Scholar 

  15. Rissafi, Y., Talbi, L., & Ghaddar, M. (2012). Experimental characterization of an UWB propagation channel in underground mines. IEEE Transactions on Antennas and Propagation, 60, 240–246. doi:10.1109/TAP.2011.2167927.

    Article  Google Scholar 

  16. Win, M. Z., Scholtz, R. A., & Barnes, M. A. (1997). Ultra-wide bandwidth signal propagation for indoor wireless communications. In Proceedings of the ICC’97—international conference on communications (pp. 56–60). IEEE.

  17. Santos, T., Karedal, J., Almers, P., et al. (2010). Modeling the ultra-wideband outdoor channel: Measurements and parameter extraction method. IEEE Transactions on Wireless Communications, 9, 282–290. doi:10.1109/TWC.2010.01.090391.

    Article  Google Scholar 

  18. Richardson, P. C., & Stark, W. (2006). Modeling of ultra-wideband channels within vehicles. IEEE Journal on Selected Areas in Communications, 24, 906–912. doi:10.1109/JSAC.2005.863882.

    Article  Google Scholar 

  19. Niu, W., Li, J., & Talty, T. (2008). Intra-vehicle UWB channel measurements and statistical analysis. In Proceedings of the IEEE GLOBECOM 2008—2008 IEEE global telecommunications conference (pp. 1–5). IEEE.

  20. Anderson, C. R., Volos, H. I., & Buehrer, R. M. (2013). Characterization of low-antenna ultrawideband propagation in a forest environment. IEEE Transactions on Vehicular Technology, 62, 2878–2895. doi:10.1109/TVT.2013.2251027.

    Article  MATH  Google Scholar 

  21. Reed, J. H. (2005). An introduction to ultra wideband communication systems. Englewood Cliffs: Prentice-Hall, Inc.

    Google Scholar 

  22. Savage, N. (2003). Radio wave propagation through vegetation: Factors influencing signal attenuation. Radio Science, 38, 1088–1101. doi:10.1029/2002RS002758.

    Article  Google Scholar 

  23. Di Francesco, A., Di Renzo, M., & Feliziani, M., et al. (2005). Sounding and modelling of the ultra wide-band channel in outdoor scenarios. In Proceedings of the 2nd international workshop on networking with ultra wide band workshop on ultra wide band for sensor networks, 2005. Networks with UWB 2005 (pp. 20–24). IEEE.

  24. Molisch, A. F., Cassioli, D., Emami, S., et al. (2006). A comprehensive standardized model for ultrawideband propagation channels. IEEE Transactions on Antennas and Propagation, 54, 3151–3166. doi:10.1109/TAP.2006.883983.

    Article  Google Scholar 

  25. Di Renzo, M., Graziosi, F., Minutolo, R., et al. (2006). The ultra-wide bandwidth outdoor channel: from measurement campaign to statistical modelling. Mobile Networks and Applications, 11, 451–467.

    Article  Google Scholar 

  26. Kim, C. W., Sun, X., Chiam, L. C., et al. (2005). Characterization of ultra-wideband channels for outdoor office environment. In IEEE wireless communications and networking conference (pp. 950–955). IEEE.

  27. Nunoo, S, Chude-Okonkwo, U. A. K., Ngah, R. (2013) Path loss and time dispersion analysis for outdoor roadway UWB propagation channel. In 2013 IEEE Malaysia international conference on communications (MICC 2013) (pp. 287–291). IEEE: Kuala Lumpur.

  28. Oestges, C., Villacieros, B. M., & Vanhoenacker-Janvier, D. (2009). Radio channel characterization for moderate antenna heights in forest areas. IEEE Transactions on Vehicular Technology, 58, 4031–4035. doi:10.1109/TVT.2009.2024947.

    Article  Google Scholar 

  29. Cavalcanti, D., Sadok, D., Kelner, J. (2002). Mobile infostations: a paradigm for wireless data communications. In Proceedings of IASTED International Conference on Wireless and Optical Communications (WOC 2002), 17–19 July 2002.

  30. Rajappan, G., Acharya, J., & Liu, H. et al. (2006). Mobile infostation network technology. In Rao, R. M., Dianat, S. A., Zoltowski, M. D. (Eds.) Proceedings of SPIE wireless sensor processing (pp. 62480M–62480M–9). Orlando, Florida.

  31. Galluccio, L., Leonardi, A., Morabito, G., & Palazzo, S. (2008). Timely and energy-efficient communications in rural infostation systems. IEEE Wireless Communications, 15, 48–53. doi:10.1109/MWC.2008.4547522.

    Article  Google Scholar 

  32. Frenkiel, R. H., Badrinath, B. R., Borres, J., et al. (2000). The infostations challenge: balancing cost and ubiquity in delivering wireless data. IEEE Personal Communications, 7, 66–71. doi:10.1109/98.839333.

    Article  Google Scholar 

  33. Vaughan, R. G., & Scott, N. L. (1999). Super-resolution of pulsed multipath channels for delay spread characterization. IEEE Transactions on Communications, 47, 343–347. doi:10.1109/26.752811.

    Article  Google Scholar 

  34. Liu, T., Kim, D., & Vaughan, R. (2007). A high-resolution, multi-template deconvolution algorithm for time-domain UWB channel characterization. Canadian Journal of Electrical and Computer Engineering, 32, 207–213. doi:10.1109/CJECE.2007.4407667.

    Article  Google Scholar 

  35. Karedal, J., Wyne, S., Almers, P., et al. (2007). A measurement-based statistical model for industrial ultra-wideband channels. IEEE Transactions on Wireless Communications, 6, 3028–3037. doi:10.1109/TWC.2007.051050.

    Article  Google Scholar 

  36. Cramer, R. J. M., Scholtz, R. A., & Win, M. Z. (2002). Evaluation of an ultra-wide-band propagation channel. IEEE Transactions on Antennas and Propagation, 50, 561–570. doi:10.1109/TAP.2002.1011221.

    Article  Google Scholar 

  37. Muqaibel, A., Safaai-Jazi, A., Woerner, B., & Riad, S. (2002). UWB channel impulse response characterization using deconvolution techniques. In 2002 45th midwest symposium on circuits and systems. MWSCAS-2002 (pp. III–605–8). IEEE.

  38. Sato, S., & Kobayashi, T. (2004). Path-loss exponents of ultra wideband signals in line-of-sight environments. In Proceedings of the eighth IEEE international symposium on spread spectrum techniques and applications Program. B (pp. 488–492). Abstr. (IEEE Cat. No. 04TH8738). IEEE.

  39. Rappaport, T. S. (2002). Wireless communication principles and practice. Englewood Cliffs, NJ: Prentice-Hall Inc.

    Google Scholar 

  40. Coulibaly, Y., Gilles, D., Nadir, H., & Dodji, A. (2013). Experimental characterization of the UW WB channel for an underground mining vehicle. In Proceedings of the 2013 7th European conference on antennas and propagation (pp. 2331–2334). Gothenburg: IEEE.

  41. Greenstein, L. J., Ghassemzadeh, S. S., Erceg, V., & Michelson, D. G. (2009). Ricean K-factors in narrow-band fixed wireless channels: theory, experiments, and statistical models. IEEE Transactions on Vehicular Technology, 58, 4000–4012. doi:10.1109/TVT.2009.2018549.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Ministry of Education, Malaysia for providing financial support for this work through the Higher Institution Center of Excellent, vote no, Q.J090601.23C6.00D04 – HICOE WIRELESS COMMUNICATION CENTER (WCC) and we would like also thank the anonymous reviewers for their insightful comments and suggestions to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Al-Samman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Samman, A.M., Rahman, T.A., Nunoo, S. et al. Experimental Characterization and Analysis for Ultra Wideband Outdoor Channel. Wireless Pers Commun 83, 3103–3118 (2015). https://doi.org/10.1007/s11277-015-2585-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2585-x

Keywords

Navigation