Abstract
This paper reports on an experimental characterization of ultra wideband (UWB) outdoor channel over a frequency range of 3.1–5.3 GHz. Time domain measurements were conducted for line-of-sight scenarios. The acquired measurement data are characterized in terms of path-loss exponents, root mean square (RMS) delay spread, K-factor and channel capacity. Results show that the path-loss exponents range between 1.4 and 2.1 for the log-distance propagation model and the RMS delay spread was found to be between 1.2 and 3.4 ns. Different statistical distributions for the delay spread were also investigated. Results of the statistical analysis also show that the correlation between RMS delay spread and transmitter receiver separation distance is very low. The small-scale fading analysis indicated that UWB signals experience Rician fading, where the maximum value of K-factor is 11 dB.
Similar content being viewed by others
References
Hashemi, H. (1993). Indoor radio propagation channel. Proceedings of the IEEE, 81, 943–968. doi:10.1109/5.231342.
Abouraddy, A. F., & Elnoubi, S. M. (2000). Statistical modeling of the indoor radio channel at 10 GHz through propagation measurements Part I: Narrow-band measurements and modeling. IEEE Transactions on Vehicular Technology, 49, 1491–1507. doi:10.1109/25.892532.
Athanasiadou, G. E., & Nix, A. R. (2000). A novel 3-D indoor ray-tracing propagation model: the path generator and evaluation of narrow-band and wide-band predictions. IEEE Transactions on Vehicular Technology, 49, 1152–1168. doi:10.1109/25.875222.
Joshi, G. G., Dietrich, C. B., Anderson, C. R., et al. (2005). Near-ground channel measurements over line-of-sight and forested paths. IEE Proceedings Microwaves, Antennas and Propagation, 152, 589–596. doi:10.1049/ip-map:20050013.
Kivinen, J., Zhao, X., & Vainikainen, P. (2001). Empirical characterization of wideband indoor radio channel at 5.3 GHz. IEEE Transactions on Antennas and Propagation, 49, 1192–1203. doi:10.1109/8.943314.
Liang, J., & Liang, Q. (2010). Outdoor propagation channel modeling in foliage environment. IEEE Transactions on Vehicular Technology, 59, 2243–2252. doi:10.1109/TVT.2010.2043697.
Skentos, N. D., Marousis, A. D., Kanatas, A. G., & Constantinou, P. (2007). Experimental multipath component characteristics for short range urban propagation environments. Eur Trans Telecommun, 18, 595–603. doi:10.1002/ett.1240.
Yu, K., Bengtsson, M., Ottersten, B., et al. (2004). Modeling of wide-band MIMO radio channels based on NLoS indoor measurements. IEEE Transactions on Vehicular Technology, 53, 655–665. doi:10.1109/TVT.2004.827164.
Molisch, A. F. (2009). Ultra-wide-band propagation channels. Proceedings of the IEEE, 97, 353–371. doi:10.1109/JPROC.2008.2008836.
Noori, N., Karimzadeh-Baee, R., & Abolghasemi, A. (2009). An empirical ultra wideband channel model for indoor laboratory environments. Radioengineering, 18, 68–74.
Lee, J.-Y. (2010). UWB channel modeling in roadway and indoor parking environments. IEEE Transactions on Vehicular Technology, 59, 3171–3180. doi:10.1109/TVT.2010.2044821.
Irahhauten, Z., Janssen, G., Nikookar, H., et al. (2006). UWB channel measurements and results for office and industrial environments. In 2006 IEEE international conference on ultra-wideband (pp. 225–230). IEEE.
Donlan, B. M., McKinstry, D. R., & Buehre, R. M. (2006). The UWB indoor channel: Large and small scale modeling. IEEE Transactions on Wireless Communications, 5, 2863–2873. doi:10.1109/TWC.2006.04482.
Nkakanou, B., Delisle, G. Y., & Hakem, N. (2011). Experimental characterization of ultra-wideband channel parameter measurements in an underground mine. Journal of Computer Networks and Communications, 2011, 1–7. doi:10.1155/2011/157596.
Rissafi, Y., Talbi, L., & Ghaddar, M. (2012). Experimental characterization of an UWB propagation channel in underground mines. IEEE Transactions on Antennas and Propagation, 60, 240–246. doi:10.1109/TAP.2011.2167927.
Win, M. Z., Scholtz, R. A., & Barnes, M. A. (1997). Ultra-wide bandwidth signal propagation for indoor wireless communications. In Proceedings of the ICC’97—international conference on communications (pp. 56–60). IEEE.
Santos, T., Karedal, J., Almers, P., et al. (2010). Modeling the ultra-wideband outdoor channel: Measurements and parameter extraction method. IEEE Transactions on Wireless Communications, 9, 282–290. doi:10.1109/TWC.2010.01.090391.
Richardson, P. C., & Stark, W. (2006). Modeling of ultra-wideband channels within vehicles. IEEE Journal on Selected Areas in Communications, 24, 906–912. doi:10.1109/JSAC.2005.863882.
Niu, W., Li, J., & Talty, T. (2008). Intra-vehicle UWB channel measurements and statistical analysis. In Proceedings of the IEEE GLOBECOM 2008—2008 IEEE global telecommunications conference (pp. 1–5). IEEE.
Anderson, C. R., Volos, H. I., & Buehrer, R. M. (2013). Characterization of low-antenna ultrawideband propagation in a forest environment. IEEE Transactions on Vehicular Technology, 62, 2878–2895. doi:10.1109/TVT.2013.2251027.
Reed, J. H. (2005). An introduction to ultra wideband communication systems. Englewood Cliffs: Prentice-Hall, Inc.
Savage, N. (2003). Radio wave propagation through vegetation: Factors influencing signal attenuation. Radio Science, 38, 1088–1101. doi:10.1029/2002RS002758.
Di Francesco, A., Di Renzo, M., & Feliziani, M., et al. (2005). Sounding and modelling of the ultra wide-band channel in outdoor scenarios. In Proceedings of the 2nd international workshop on networking with ultra wide band workshop on ultra wide band for sensor networks, 2005. Networks with UWB 2005 (pp. 20–24). IEEE.
Molisch, A. F., Cassioli, D., Emami, S., et al. (2006). A comprehensive standardized model for ultrawideband propagation channels. IEEE Transactions on Antennas and Propagation, 54, 3151–3166. doi:10.1109/TAP.2006.883983.
Di Renzo, M., Graziosi, F., Minutolo, R., et al. (2006). The ultra-wide bandwidth outdoor channel: from measurement campaign to statistical modelling. Mobile Networks and Applications, 11, 451–467.
Kim, C. W., Sun, X., Chiam, L. C., et al. (2005). Characterization of ultra-wideband channels for outdoor office environment. In IEEE wireless communications and networking conference (pp. 950–955). IEEE.
Nunoo, S, Chude-Okonkwo, U. A. K., Ngah, R. (2013) Path loss and time dispersion analysis for outdoor roadway UWB propagation channel. In 2013 IEEE Malaysia international conference on communications (MICC 2013) (pp. 287–291). IEEE: Kuala Lumpur.
Oestges, C., Villacieros, B. M., & Vanhoenacker-Janvier, D. (2009). Radio channel characterization for moderate antenna heights in forest areas. IEEE Transactions on Vehicular Technology, 58, 4031–4035. doi:10.1109/TVT.2009.2024947.
Cavalcanti, D., Sadok, D., Kelner, J. (2002). Mobile infostations: a paradigm for wireless data communications. In Proceedings of IASTED International Conference on Wireless and Optical Communications (WOC 2002), 17–19 July 2002.
Rajappan, G., Acharya, J., & Liu, H. et al. (2006). Mobile infostation network technology. In Rao, R. M., Dianat, S. A., Zoltowski, M. D. (Eds.) Proceedings of SPIE wireless sensor processing (pp. 62480M–62480M–9). Orlando, Florida.
Galluccio, L., Leonardi, A., Morabito, G., & Palazzo, S. (2008). Timely and energy-efficient communications in rural infostation systems. IEEE Wireless Communications, 15, 48–53. doi:10.1109/MWC.2008.4547522.
Frenkiel, R. H., Badrinath, B. R., Borres, J., et al. (2000). The infostations challenge: balancing cost and ubiquity in delivering wireless data. IEEE Personal Communications, 7, 66–71. doi:10.1109/98.839333.
Vaughan, R. G., & Scott, N. L. (1999). Super-resolution of pulsed multipath channels for delay spread characterization. IEEE Transactions on Communications, 47, 343–347. doi:10.1109/26.752811.
Liu, T., Kim, D., & Vaughan, R. (2007). A high-resolution, multi-template deconvolution algorithm for time-domain UWB channel characterization. Canadian Journal of Electrical and Computer Engineering, 32, 207–213. doi:10.1109/CJECE.2007.4407667.
Karedal, J., Wyne, S., Almers, P., et al. (2007). A measurement-based statistical model for industrial ultra-wideband channels. IEEE Transactions on Wireless Communications, 6, 3028–3037. doi:10.1109/TWC.2007.051050.
Cramer, R. J. M., Scholtz, R. A., & Win, M. Z. (2002). Evaluation of an ultra-wide-band propagation channel. IEEE Transactions on Antennas and Propagation, 50, 561–570. doi:10.1109/TAP.2002.1011221.
Muqaibel, A., Safaai-Jazi, A., Woerner, B., & Riad, S. (2002). UWB channel impulse response characterization using deconvolution techniques. In 2002 45th midwest symposium on circuits and systems. MWSCAS-2002 (pp. III–605–8). IEEE.
Sato, S., & Kobayashi, T. (2004). Path-loss exponents of ultra wideband signals in line-of-sight environments. In Proceedings of the eighth IEEE international symposium on spread spectrum techniques and applications Program. B (pp. 488–492). Abstr. (IEEE Cat. No. 04TH8738). IEEE.
Rappaport, T. S. (2002). Wireless communication principles and practice. Englewood Cliffs, NJ: Prentice-Hall Inc.
Coulibaly, Y., Gilles, D., Nadir, H., & Dodji, A. (2013). Experimental characterization of the UW WB channel for an underground mining vehicle. In Proceedings of the 2013 7th European conference on antennas and propagation (pp. 2331–2334). Gothenburg: IEEE.
Greenstein, L. J., Ghassemzadeh, S. S., Erceg, V., & Michelson, D. G. (2009). Ricean K-factors in narrow-band fixed wireless channels: theory, experiments, and statistical models. IEEE Transactions on Vehicular Technology, 58, 4000–4012. doi:10.1109/TVT.2009.2018549.
Acknowledgments
The authors thank the Ministry of Education, Malaysia for providing financial support for this work through the Higher Institution Center of Excellent, vote no, Q.J090601.23C6.00D04 – HICOE WIRELESS COMMUNICATION CENTER (WCC) and we would like also thank the anonymous reviewers for their insightful comments and suggestions to improve the quality of this paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Al-Samman, A.M., Rahman, T.A., Nunoo, S. et al. Experimental Characterization and Analysis for Ultra Wideband Outdoor Channel. Wireless Pers Commun 83, 3103–3118 (2015). https://doi.org/10.1007/s11277-015-2585-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-015-2585-x