[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An online approach for cooperative cache updating and forwarding in mobile edge network

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The proliferation of technological advancement in the Internet of Things (IoT) and mobile devices accelerates the need for latency-sensitive multimedia applications. The network operator may charge application vendors to cache their content. Vendors risk losing their user base if users don’t receive the expected Quality of Service (QoS), which includes meeting specific delay thresholds for services like video on demand. While multiple content copies can enhance QoS by delivering content quickly, maintaining redundant copies is costly. Therefore, deploying edge servers at edge nodes and caching content is a prominent solution for application vendors. This approach guarantees lower latency, fewer content replicas, and reduced strain on backhaul links. However, the limited cache capabilities of individual edge nodes present challenges, such as efficiently allocating scarce resources to meet user demands. This work addresses the earlier challenges by formulating a cooperative content caching and forwarding problem by placing the various latency-sensitive content to minimize the total cost with resource and deadline constraints. The problem is formulated as an integer linear programming problem for cooperative caching in mobile edge networks to mitigate the total cost to the application vendors. In the absence of content popularity information, an online cooperative caching mechanism is presented to solve the dynamic content request and forwarding problem. Extensive simulations have been performed to illustrate that the proposed online algorithm significantly enhances the performance in terms of the total cost, load on the cloud, hit ratio, time utility, and cache utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availibility

Not applicable.

Code availability

The program of this paper is supported by custom code. It can be applied from the corresponding author on reasonable request.

References

  1. Liu, S., Liu, L., Tang, J., Yu, B., Wang, Y., & Shi, W. (2019). Edge computing for autonomous driving: Opportunities and challenges. Proceedings of the IEEE, 107(8), 1697–1716.

    Article  Google Scholar 

  2. Bermejo, C., & Hui, P. (2021). A survey on haptic technologies for mobile augmented reality. ACM Computing Surveys (CSUR), 54(9), 1–35.

    Article  Google Scholar 

  3. Inc CS. (2020). Cisco annual internet report, 2018–2023. White Paper

  4. Charles, J. P., Furuskär, A., Frodigh, M., Jeux, S., Saadani, A., Hassan, M. S., Stidwell, A., Söder, J., & Timuş, B. (2015). Refined statistical analysis of evolution approaches for wireless networks. IEEE Transactions on Wireless Communications, 14(5), 2700–2710.

    Article  Google Scholar 

  5. Intharawijitr, K., Iida, K., & Koga, H. (2016) Analysis of fog model considering computing and communication latency in 5g cellular networks. In 2016 IEEE international conference on pervasive computing and communication workshops (PerCom workshops) (pp. 1–4). IEEE.

  6. Li, L., Zhao, G., & Blum, R. S. (2018). A survey of caching techniques in cellular networks: Research issues and challenges in content placement and delivery strategies. IEEE Communications Surveys & Tutorials, 20(3), 1710–1732.

    Article  Google Scholar 

  7. Chou, S. F., Chiu, T. C., Yu, Y. J., & Pang, A. C. (2014) Mobile small cell deployment for next generation cellular networks. In 2014 IEEE global communications conference (pp. 4852–4857). IEEE

  8. Siriwardhana, Y., Porambage, P., Liyanage, M., & Ylianttila, M. (2021). A survey on mobile augmented reality with 5g mobile edge computing: Architectures, applications, and technical aspects. IEEE Communications Surveys & Tutorials, 23(2), 1160–1192.

    Article  Google Scholar 

  9. Somesula, M. K., Mothku, S. K., & Annadanam, S. C. (2023). Cooperative service placement and request routing in mobile edge networks for latency-sensitive applications. IEEE Systems Journal, 17(3), 4050–4061.

    Article  Google Scholar 

  10. Somesula, M. K., Kotte, A., Annadanam, S. C., & Mothku, S. K. (2022). Deadline-aware cache placement scheme using fuzzy reinforcement learning in device-to-device mobile edge networks. Mobile Networks and Applications, 27(5), 2100–2117.

    Article  Google Scholar 

  11. Somesula, MK., Mothku, SK., & Kotte, A. (2022b) Deep reinforcement learning mechanism for deadline-aware cache placement in device-to-device mobile edge networks. Wireless Networks 1–20

  12. Somesula, MK., Rout, RR., & Somayajulu, D. (2021a) Deadline-aware caching using echo state network integrated fuzzy logic for mobile edge networks. Wireless Networks 1–21

  13. Somesula, M. K., Rout, R. R., & Somayajulu, D. (2021). Contact duration-aware cooperative cache placement using genetic algorithm for mobile edge networks. Computer Networks, 193, 108062.

    Article  Google Scholar 

  14. Tran, T. X., Le, D. V., Yue, G., & Pompili, D. (2018). Cooperative hierarchical caching and request scheduling in a cloud radio access network. IEEE Transactions on Mobile Computing, 17(12), 2729–2743.

    Article  Google Scholar 

  15. Wang, C., He, Y., Yu, F. R., Chen, Q., & Tang, L. (2017). Integration of networking, caching, and computing in wireless systems: A survey, some research issues, and challenges. IEEE Communications Surveys & Tutorials, 20(1), 7–38.

    Article  Google Scholar 

  16. Poularakis, K., Iosifidis, G., & Tassiulas, L. (2014). Approximation algorithms for mobile data caching in small cell networks. IEEE Transactions on Communications, 62(10), 3665–3677.

    Article  Google Scholar 

  17. Khreishah, A., & Chakareski, J. (2015) Collaborative caching for multicell-coordinated systems. In 2015 IEEE conference on computer communications workshops (INFOCOM WKSHPS) (pp. 257–262). IEEE

  18. Kwak, J., Kim, Y., Le, L. B., & Chong, S. (2018). Hybrid content caching in 5g wireless networks: Cloud versus edge caching. IEEE Transactions on Wireless Communications, 17(5), 3030–3045.

    Article  Google Scholar 

  19. Wang, L., Bayhan, S., Ott, J., Kangasharju, J., & Crowcroft, J. (2018). Understanding scoped-flooding for content discovery and caching in content networks. IEEE Journal on Selected Areas in Communications, 36(8), 1887–1900.

    Article  Google Scholar 

  20. Mukhopadhyay, A., Hegde, N., & Lelarge, M. (2018) Optimal content replication and request matching in large caching systems. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 288–296). IEEE

  21. Pu, L., Jiao, L., Chen, X., Wang, L., Xie, Q., & Xu, J. (2018). Online resource allocation, content placement and request routing for cost-efficient edge caching in cloud radio access networks. IEEE Journal on Selected Areas in Communications, 36(8), 1751–1767.

    Article  Google Scholar 

  22. Liu, X., Li, Z., Yang, P., & Dong, Y. (2017). Information-centric mobile ad hoc networks and content routing: A survey. Ad Hoc Networks, 58, 255–268.

    Article  Google Scholar 

  23. Saraswat, S., Gupta, H. P., Dutta, T., & Das, S. K. (2019) Energy efficient data forwarding scheme in fog based ubiquitous system with deadline constraints. IEEE Transactions on Network and Service Management

  24. Karthik, S. S., & Kavithamani, A. (2021). Fog computing-based deep learning model for optimization of microgrid-connected WSN with load balancing. Wireless Networks, 27, 2719–2727.

    Article  Google Scholar 

  25. Lai, P., He, Q., Cui, G., Chen, F., Grundy, J., Abdelrazek, M., Hosking, J., & Yang, Y. (2021). Cost-effective user allocation in 5g noma-based mobile edge computing systems. IEEE Transactions on Mobile Computing, 21(12), 4263–4278.

    Article  Google Scholar 

  26. Somesula, M. K., Rout, R. R., & Somayajulu, D. V. (2022). Cooperative cache update using multi-agent recurrent deep reinforcement learning for mobile edge networks. Computer Networks, 209, 108876.

    Article  Google Scholar 

  27. Xia, X., Chen, F., He, Q., Grundy, J., Abdelrazek, M., & Jin, H. (2020). Online collaborative data caching in edge computing. IEEE Transactions on Parallel and Distributed Systems, 32(2), 281–294.

    Article  Google Scholar 

  28. Cui, Y., Song, J., Li, M., Ren, Q., Zhang, Y., & Cai, X. (2018). SDN-based big data caching in ISP networks. IEEE Transactions on Big Data, 4(3), 356–367.

    Article  Google Scholar 

  29. Applegate, D., Archer, A., Gopalakrishnan, V., Lee, S., & Ramakrishnan, K. (2016). Optimal content placement for a large-scale VOD system. IEEE/ACM Transactions on Networking, 24(4), 2114–2127.

    Article  Google Scholar 

  30. Malazi, H. T., Chaudhry, S. R., Kazmi, A., Palade, A., Cabrera, C., White, G., & Clarke, S. (2022) Dynamic service placement in multi-access edge computing: A systematic literature review. IEEE Access

  31. Poularakis, K., Llorca, J., Tulino, A. M., Taylor, I., & Tassiulas, L. (2020). Service placement and request routing in MEC networks with storage, computation, and communication constraints. IEEE/ACM Transactions on Networking, 28(3), 1047–1060.

    Article  Google Scholar 

  32. Shanmugam, K., Golrezaei, N., Dimakis, A. G., Molisch, A. F., & Caire, G. (2013). Femtocaching: Wireless content delivery through distributed caching helpers. IEEE Transactions on Information Theory, 59(12), 8402–8413.

    Article  MathSciNet  Google Scholar 

  33. ElBamby, M. S., Bennis, M., Saad, W., & Latva-Aho, M. (2014) Content-aware user clustering and caching in wireless small cell networks. In 2014 11th International symposium on wireless communications systems (ISWCS) (pp. 945–949). IEEE

  34. Maddah-Ali, M. A., & Niesen, U. (2014). Fundamental limits of caching. IEEE Transactions on Information Theory, 60(5), 2856–2867.

    Article  MathSciNet  Google Scholar 

  35. Somesula, M. K., Rout, R. R., & Somayajulu, D. (2023). Greedy cooperative cache placement for mobile edge networks with user preferences prediction and adaptive clustering. Ad Hoc Networks, 140, 103051.

    Article  Google Scholar 

  36. Ostovari, P., Wu, J., & Khreishah, A. (2016) Efficient online collaborative caching in cellular networks with multiple base stations. In 2016 IEEE 13th International Conference on Mobile Ad Hoc and Sensor Systems (MASS) (pp. 136–144). IEEE

  37. Blaszczyszyn, B., & Giovanidis. A. (2015) Optimal geographic caching in cellular networks. In 2015 IEEE International Conference on Communications (ICC) (pp. 3358–3363). IEEE

  38. Gao, B., Zhou, Z., Liu, F., & Xu, F. (2019) Winning at the starting line: Joint network selection and service placement for mobile edge computing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1459–1467). IEEE

  39. Gharaibeh, A., Khreishah, A., Ji, B., & Ayyash, M. (2016). A provably efficient online collaborative caching algorithm for multicell-coordinated systems. IEEE Transactions on Mobile Computing, 15(8), 1863–1876.

    Article  Google Scholar 

  40. Wang, L., Jiao, L., Li, J., Gedeon, J., & Mühlhäuser, M. (2018). Moera: Mobility-agnostic online resource allocation for edge computing. IEEE Transactions on Mobile Computing, 18(8), 1843–1856.

    Article  Google Scholar 

  41. Poularakis, L. T. (2019). Publicly available code, 2019. https://www.dropbox.com/s/q4649v21mg2uvs7/tmccode.rar?dl=0. Accessed 23 Mar 2024

  42. Xia, X., Chen, F., He, Q., Cui, G., Lai, P., Abdelrazek, M., Grundy, J., & Jin, H. (2020). Graph-based data caching optimization for edge computing. Future generation computer systems, 113, 228–239.

    Article  Google Scholar 

  43. Yin, J., Li, L., Zhang, H., Li, X., Gao, A., & Han, Z. (2018) A prediction-based coordination caching scheme for content centric networking. In 2018 27th wireless and optical communication conference (WOCC) (pp. 1–5). IEEE

  44. Huang, Y., Song, X., Ye, F., Yang, Y., & Li, X. (2019). Fair and efficient caching algorithms and strategies for peer data sharing in pervasive edge computing environments. IEEE Transactions on Mobile Computing, 19(4), 852–864.

    Article  Google Scholar 

  45. Chen, Z., Lee, J., Quek, T. Q., & Kountouris, M. (2017). Cooperative caching and transmission design in cluster-centric small cell networks. IEEE Transactions on Wireless Communications, 16(5), 3401–3415.

    Article  Google Scholar 

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar Somesula.

Ethics declarations

Conflict of interest

The authors declare that they do not have any known conflict of interest.

Informed consent

Not applicable.

Ethical statement

The work submitted by the authors is his own work and it is neither published nor considered for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somesula, M.K., Brahma, B., Raju, M.R. et al. An online approach for cooperative cache updating and forwarding in mobile edge network. Wireless Netw (2024). https://doi.org/10.1007/s11276-024-03749-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11276-024-03749-7

Keywords

Navigation