Abstract
Copper (Cu) is an essential metal and both its deficiency and excess has negative effects on the growth and physiology of plants. Some plant species can tolerate high Cu concentrations due to their anatomical and physiological strategies. These plants can avoid absorption or accumulate this element in their biomass. Thus, the aim was to analyze the anatomical and physiological changes of Alternanthera tenella in response to excess Cu under in vitro conditions. A. tenella plants, previously established in vitro, were transferred to culture media containing 0, 25, 50, 100 or 200 µM Cu. At 30 days of culture, the stem and leaf anatomy, contents of photosynthetic pigments mineral nutrients, chlorophyll fluorescence, and, growth were analyzed. The excess Cu induced lower biomass accumulation. Plants also presented a decline in cell sizes of stem and leaf tissues under high Cu concentrations. Greater formation of druse crystals and lower number of active reaction centers (RC/CSM) were observed with 200 μM Cu. The Cu treatments modulated the contents of mineral nutrients and photosynthetic pigments of the plants. Plants cultured in media with Cu absence or excess (200 μM Cu) presented partial inhibition of electron transport and photochemical activity of photosystem II. Even though A. tenella plants showed clear signs of stress under Cu excess, they also have a strong capacity for Cu bioaccumulation and tolerance. A. tenella plants can be used for phytoremediation or bioindication due to their tolerance and high Cu bioaccumulation capacity.
Key message
Copper can modulate the morphophysiology of A. tenella under in vitro conditions. A. tenella can be used for phytoremediation or bioindication due to its tolerance and high copper bioaccumulation capacity.
Similar content being viewed by others
References
Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M, Zia-ur-Rehman M, Irshad MK, Bharwana SA (2015) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res 22:8148–8162. https://doi.org/10.1007/s11356-015-4496-5
Aguirre G, Pilon M (2016) Copper delivery to chloroplast proteins and its regulation. Front Plant Sci 6:1250. https://doi.org/10.3389/fpls.2015.01250
Alia N, Sardar K, Said M, Salma K, Sadia A, Sadaf S, Miklas S (2015) Toxicity and bioaccumulation of heavy metals in spinach (Spinacia oleracea) grown in a controlled environment. Int J Environ Res Public Health 12:7400–7416. https://doi.org/10.3390/ijerph120707400
Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15. https://doi.org/10.1104/pp.24.1.1
Aydoğan S, Erdağ B, Aktaş L (2017) Bioaccumulation and oxidative stress impact of Pb, Ni, Cu, and Cr heavy metals in two bryophyte species, Pleurochaete squarrosa and Timmiella barbuloides. Turk J Bot 41:464–475. https://doi.org/10.3906/bot-1608-33
Bączek-Kwinta R, Juzoń K, Borek M, Antonkiewicz J (2019) Photosynthetic response of cabbage in cadmium-spiked soil. Photosynthetica 57:731–739. https://doi.org/10.32615/ps.2019.070
Batool R, Hameed M, Ashraf M, Ahmad MSA, Fatima S (2015) Physio-anatomical responses of plants to heavy metals. In: Öztürk M, Ashraf M, Aksoy A, Ahmad M (eds) Phytoremediation for green energy. Springer, Dordrecht, pp 79–96. https://doi.org/10.1007/978-94-007-7887-0_5
Brundrett MC, Enstone DE, Peterson CA (1988) A berberine-aniline blue fluorescent staining procedure for suberin, lignin, and callose in plant tissue. Protoplasma 146:133–142. https://doi.org/10.1007/BF01405922
Brunetto G, Rosa DJ, Ambrosini VG, Heinzen J, Ferreira PAA, Ceretta CA, Soares RFSC, Melo GWB, Soriani HH, Nicoloso FT, Farias JG, Contig LD, Silva LOS, Santana N, Couto RR, Jacques RJS, Tiecher TL (2019) Use of phosphorus fertilization and mycorrhization as strategies for reducing copper toxicity in young grapevines. Sci Hort 248:176–183. https://doi.org/10.1016/j.scienta.2019.01.026
Camacho-Cristóbal JJ, Martín-Rejano EM, Herrera-Rodríguez MB, Navarro-Gochicoa MT, Rexach J, González-Fontes A (2015) Boron deficiency inhibits root cell elongation via an ethylene/auxin/ROS-dependent pathway in Arabidopsis seedlings. J Exp Bot 66:3831–3840. https://doi.org/10.1093/jxb/erv186
Cao K, Yu J, Xu D, Ai K, Bao E, Zou Z (2018) Exposure to lower red to far-red light ratios improve tomato tolerance to salt stress. BMC Plant Biol 18:92. https://doi.org/10.1186/s12870-018-1310-9
Çiçek N, Pekcan V, Arslan Ö, Erdal ŞÇ, Nalçaiyi ASB, Çil AN, Şahin V, Kaya Y, Ekmekçi Y (2019) Assessing drought tolerance in field-grown sunflower hybrids by chlorophyll fluorescence kinetics. Braz J Bot 42:249–260. https://doi.org/10.1007/s40415-019-00534-1
Costa MB, Tavares FV, Martinez CB, Colares IG, Martins CDMG (2018) Accumulation and effects of copper on aquatic macrophytes Potamogeton pectinatus L.: potential application to environmental monitoring and phytoremediation. Ecotoxicol Environ Saf 155:117–124. https://doi.org/10.1016/j.ecoenv.2018.01.062
Couselo JL, Corredoira E, Vieitez AM, Ballester A (2012) Plant tissue culture of fast-growing trees for phytoremediation research. In: Loyola-Vargas V, Ochoa-Alejo N (eds) Plant cell culture protocols. Methods in molecular biology (methods and protocols), vol 877. Humana Press, Totowa, pp 247–263. https://doi.org/10.1007/978-1-61779-818-4_19
Cuchiara CC, Silva IMC, Martinazzo EG, Braga EJB, Bacarin MA, Peters JA (2013) Chlorophyll fluorescence transient analysis in Alternanthera tenella Colla plants grown in nutrient solution with different concentrations of copper. J Agric Sci 5:8–16
Cuchiara CC, Silva IMC, Dalberto DS, Bacarin MA, Peters JA (2015) Chlorophyll a fluorescence in sweet potatoes under different copper concentrations. J Soil Sci Plant Nutr 15:179–189. https://doi.org/10.4067/S0718-95162015005000015
Dai H, Xu Y, Zhao L, Shan C (2016) Alleviation of copper toxicity on chloroplast antioxidant capacity and photosystem II photochemistry of wheat by hydrogen sulfide. Braz J Bot 39:787–793. https://doi.org/10.1007/s40415-016-0250-6
Dias CS, Araujo L, Alves Chaves JA, DaMatta FM, Rodrigues FA (2018) Water relation, leaf gas exchange and chlorophyll a fluorescence imaging of soybean leaves infected with Colletotrichum truncatum. Plant Physiol Biochem 127:119–128. https://doi.org/10.1016/j.plaphy.2018.03.016
Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:756120. https://doi.org/10.1155/2015/756120
Fan KC, His HC, Chen CW, Lee HL, Hseu ZY (2011) Cadmium accumulation and tolerance of mahogany (Swietenia macrophylla) seedlings for phytoextraction applications. J Environ Manag 92:2818–2822. https://doi.org/10.1016/j.jenvman.2011.06.032
Fellipe GM, Alencastro FMMR (1966) Contribuição ao estudo da nervação foliar das compostas dos cerrados: I, Tribus: Helenieae, Heliantheae, Inuleae, Mutiseae, e Senecioneae. An Acad Bras Ciênc 38:125–157
Giri S, Singh AK, Mahato MK (2017) Metal contamination of agricultural soils in the copper mining areas of Singhbhum shear zone in India. J Earth Syst Sci 126:49. https://doi.org/10.1007/s12040-017-0833-z
Goltsev VN, Kalaji HM, Paunov M, Bąba W, Horaczek T, Mojski J, Kociel H, Allakhverdiev SI (2016) Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russ J Plant Physiol 63:869–893. https://doi.org/10.1134/S1021443716050058
Guo Q, Meng L, Zhang Y-N, Mao P-C, Tian X-X, Li S-S, Zhang L (2017) Antioxidative systems, metal ion homeostasis and cadmium distribution in Iris lactea exposed to cadmium stress. Ecotoxicol Environ Saf 139:50–55. https://doi.org/10.1016/j.ecoenv.2016.12.013
Ha S, Tran L-S (2014) Understanding plant responses to phosphorus starvation for improvement of plant tolerance to phosphorus deficiency by biotechnological approaches. Crit Rev Biotechnol 34:16–30. https://doi.org/10.3109/07388551.2013.783549
Hou X, Han H, Cai L, Liu A, Ma X, Zhou Z, Wang G, Meng F (2018) Pb stress effects on leaf chlorophyll fluorescence, antioxidative enzyme activities, and organic acid contents of Pogonatherum crinitum seedlings. Flora 240:82–88. https://doi.org/10.1016/j.flora.2018.01.006
Huang D, Gong X, Liu Y, Zeng G, Lai C, Bashir H, Zhou L, Wang D, Xu P, Cheng M, Wan J (2017) Effects of calcium at toxic concentrations of cadmium in plants. Planta 245:863–873. https://doi.org/10.1007/s00425-017-2664-1
Jáuregui-Zùñiga D, Ferrer MA, Calderón AA, Muñoz R, Moreno A (2005) Heavy metal stress reduces the deposition of calcium oxalate crystals in leaves of Phaseolus vulgaris. J Plant Physiol 162:1183–1187. https://doi.org/10.1016/j.jplph.2005.03.002
Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Łukasik I, Goltsev V, Ladle RJ (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plantarum 4:1–11. https://doi.org/10.1007/s11738-016-2113-y
Kang W, Bao J, Zheng J, Xu F, Wang L (2018) Phytoremediation of heavy metal contaminated soil potential by woody plants on Tonglushan ancient copper spoil heap in China. Int J Phytoremediat 20:1–7. https://doi.org/10.1080/15226514.2014.950412
Kanwal U, Ibrahim M, Ali S, Adrees M, Mahmood A, Rizwan M, Abbas F, Dawood M, Muhammad TAD (2019) Potential of Alternanthera bettzickiana (Regel) G. Nicholson for remediation of cadmium-contaminated soil using citric acid. Pak J Agric Sci 56:753–759. https://doi.org/10.21162/PAKJAS/19.8181
Karabourniotis G, Liakopoulos G, Nikolopoulos D, Bresta P (2019) Protective and defensive roles of non-glandular trichomes against multiple stresses: structure–function coordination. J For Res. https://doi.org/10.1007/s11676-019-01034-4
Khan ZI, Safdar H, Ahmad K, Wajid K, Bashir H, Ugulu I, Dogan Y (2020) Copper bioaccumulation and translocation in forages grown in soil irrigated with sewage water. Pak J Bot 52:111–119. https://doi.org/10.30848/PJB2020-1(12)
Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA, redox state and excitation energy fluxes. Photosynth Res 79:209–218. https://doi.org/10.1023/B:PRES.0000015391.99477.0d
Kraus JE, Arduin M (1997) Manual básico de métodos em morfologia vegetal. EDRU, Seropédica, p 198
Kumar A, Parsad MNV (2015) Lead-induced toxicity and interference in chlorophyll fluorescence in Talinum triangulare grown hydroponically. Photosynthetica 53:66–71. https://doi.org/10.1007/s11099-015-0091-8
Kumar V, Pandita S, Sidhu GPS, Sharma A, Khanna K, Kaur P, Bali AS, Setia R (2021) Copper bioavailability, uptake, toxicity and tolerance in plants: a comprehensive review. Chemosphere 262:127810. https://doi.org/10.1016/j.chemosphere.2020.127810
Küpper H, Andresen E (2016) Mechanisms of metal toxicity in plants. Metallomics 8:269–285
Küpper H, Setik I, Spiller M, Küpper F, Prasil O (2002) Heavy-metal induced inhibition of photosynthesis targets in vivo heavy metal chlorophyll formation. J Phycol 38:429–441. https://doi.org/10.1046/j.1529-8817.2002.01148.x
Leong TM, Anderson JM (1984) Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. II. Regulation of electron transport capacities, electron carriers, coupling factor (CF1) activity and rates of photosynthesis. Photosynth Res 5:117–128. https://doi.org/10.1007/BF00028525
Lux A, Sottnikova A, Opatrna J, Greger M (2004) Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiol Plantarum 120:537–545. https://doi.org/10.1111/j.0031-9317.2004.0275.x
Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121. https://doi.org/10.1016/j.ecoenv.2015.12.023
Malavolta E, Vitti G, Oliveira SA (1997) Avaliação do estado nutricional das plantas: princípios e aplicações. Piracicaba, Potafos, p 319
Martins JPR, Martins AD, Pires MF, Junior RAB, Reis RO, Dias GDM, Pasqual M (2016) Anatomical and physiological responses of Billbergia zebrina (Bromeliaceae) to copper excess in a controlled microenvironment. Plant Cell Tissue Organ Cult 126:43–57. https://doi.org/10.1007/s11240-016-0975-8
Martins JPR, Rodrigues LCA, Silva TS, Santos ER, Falqueto AR, Gontijo ABPL (2019) Sources and concentrations of silicon modulate the physiological and anatomical responses of Aechmea blanchetiana (Bromeliaceae) during in vitro culture. Plant Cell Tissue Organ Cult 137:397–410. https://doi.org/10.1007/s11240-019-01579-6
Mazen AMA (2004) Calcium oxalate deposits in leaves of Corchorus olitorius as related to accumulation of toxic metals. Russ J Plant Physiol 51:281–285. https://doi.org/10.1023/B:RUPP.0000019226.03536.21
McBride MB, Kelch S, Schmidt M, Zhou Y, Aristilde L, Martinez CE (2019) Lead solubility and mineral structures of coprecipitated lead/calcium oxalates. Environ Sci Technol 53:13794–13801. https://doi.org/10.1021/acs.est.9b05638
Meneguelli-Souza AC, Vitória AP, Vieira TO, Degli-Esposti MSO, Souza CMM (2016) Ecophysiological responses of Eichhornia crassipes (Mart.) Solms to As5+ under different stress conditions. Photosynthetica 54:243–250. https://doi.org/10.1007/s11099-015-0174-6
Meng LL, Song JF, Wen J, Zhang J, Wei JH (2016) Effects of drought stress on fluorescence characteristics of photosystem II in leaves of Plectranthus scutellarioides. Photosynthetica 54:414–421. https://doi.org/10.1007/s11099-016-0191-0
Migocka M, Malas K (2018) Plant responses to copper: molecular and regulatory mechanisms of copper uptake, distribution and accumulation in plants. In: Hossain MA, Kamiya T, Burritt DJ, Tran LSP, Fujiwara T (eds) Plant micronutrient use efficiency. Elsevier, Amsterdam, pp 71–86. https://doi.org/10.1016/B978-0-12-812104-7.00005-8
Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Mussury RM, Silva MA, Betoni R, Scalon SPQ, Melo AMMMF (2008) Contribuição ao estudo farmacobotânico de Alternanthera sessilis (L.) DC e Althernanthera tenella Colla (Amaranthaceae). Rev Bras Farm 89:189–193
Muszyńska E, Hanus-Fajerska E, Ciarkowska K (2018) Studies on lead and cadmium toxicity in Dianthus carthusianorum calamine ecotype cultivated in vitro. Plant Biol 20:474–482. https://doi.org/10.1111/plb.12712
Nair PMG, Chung IM (2015) Biochemical, anatomical and molecular level changes in cucumber (Cucumis sativus) seedlings exposed to copper oxide nanoparticles. Biologia 70:1575–1585. https://doi.org/10.1515/biolog-2015-0193
Odiyi B, Ologundudu FA, Adegbite T (2019) Phytoremediation potential of Amaranthus hybridus L. (Caryophyllales: Amaranthaceae) on soil amended with brewery effluent. Braz J Biol Sci 6:401–411. https://doi.org/10.21472/bjbs.061308
Panagos P, Ballabio C, Lugato E, Jones A, Borrelli P, Scarpa S, Orgiazzi A, Montanarella L (2018) Potential sources of anthropogenic copper inputs to European agricultural soils. Sustainability 10:2380. https://doi.org/10.3390/su10072380
Parmoon G, Ebadi A, Jahanbakhsh S, Hashemi M, Moosavi SA (2019) Assessing photosynthetic performance of fennel (Foeniculum vulgare Mill) influenced by plant growth regulators and drought stress imposed at vegetative and reproductive stages. Ital J Agron 14:1319
Parvin K, Nahar K, Hasanuzzaman M, Bhuyan MHMB, Fujita M (2019) Calcium-mediated growth regulation and abiotic stress tolerance in plants. In: Hasanuzzaman M, Hakeem K, Nahar K, Alharby H (eds) Plant abiotic stress tolerance. Springer, Cham, pp 291–331. https://doi.org/10.1007/978-3-030-06118-0_13
Peng H, Kroneck PMH, Küpper H (2013) Toxicity and deficiency of copper in Elsholtzia splendens affect photosynthesis biophysics, pigments and metal accumulation. Environ Sci Technol 47:6120–6128. https://doi.org/10.1021/es3050746
Rahman A, Mostofa MG, Alam MM, Nahar K, Hasanuzzaman M, Fujita M (2015) Calcium mitigates arsenic toxicity in rice seedlings by reducing arsenic uptake and modulating the antioxidant defense and glyoxalase systems and stress markers. BioMed Res Int 2015:1–12. https://doi.org/10.1155/2015/340812
Rahman A, Mostofa MG, Nahar K, Hasanuzzaman M, Fujita M (2016) Exogenous calcium alleviates cadmium-induced oxidative stress in rice (Oryza sativa L.) seedlings by regulating the antioxidant defense and glyoxalase systems. Braz J Bot 39:393–407. https://doi.org/10.1007/s40415-015-0240-0
Rehman M, Liu L, WangSaleem QMH, Bashir S, Ullah S, Peng D (2019) Copper environmental toxicology, recent advances, and future outlook: a review. Environ Sci Pollut Res 26:18003–18016. https://doi.org/10.1007/s11356-019-05073-6
Rodrigues LCA, Martins JPR, Almeida Júnior O, Guilherme LRG, Pasqual M, Castro EM (2017) Tolerance and potential for bioaccumulation of Alternanthera tenella Colla to cadmium under in vitro conditions. Plant Cell Tissue Organ Cult 130:1–13. https://doi.org/10.1007/s11240-017-1241-4
Rosa WS, Martins JPR, Santos ER, Rodrigues LCA, Gontijo ABPL, Falqueto AR (2018) Photosynthetic apparatus performance in function of the cytokinins used during the in vitro multiplication of Aechmea blanchetiana (Bromeliaceae). Plant Cell Tissue Organ Cult 133:339–350. https://doi.org/10.1007/s11240-018-1385-x
Saleem MH, Ali S, Rehman M, Rana MS, Rizwan M, Kamran M, Imran M, Riaz M, Soliman MH, Elkelish A, Liu L (2020) Influence of phosphorus on copper phytoextraction via modulating cellular organelles in two jute (Corchorus capsularis L.) varieties grown in a copper mining soil of Hubei Province, China. Chemosphere 248:126032. https://doi.org/10.1016/j.chemosphere.2020.126032
Santos ER, Martins JPR, Rodrigues LCA, Gontijo ABPL, Falqueto AR (2020) Morphophysiological responses of Billbergia zebrina Lindl. (Bromeliaceae) in function of types and concentrations of carbohydrates during conventional in vitro culture. Ornam Hort 26:18–34. https://doi.org/10.1590/2447-536X.v26i1.2092
Sarret G, Harada E, Choi YE, Isaure MP, Geoffroy N, Fakra S, Marcus MA, Birschwilks M, Clemens S, Manceau A (2006) Trichomes of tobacco excrete zinc as zinc-substituted calcium carbonate and other zinc-containing compounds. Plant Physiol 141:1021–1034. https://doi.org/10.1104/pp.106.082743
Schulten A, Krämer U (2017) Interactions between copper homeostasis and metabolism in plants. In: Cánovas F, Lüttge U, Matyssek R (eds) Progress in botany, vol 79. Springer, Cham, pp 111–146. https://doi.org/10.1007/124_2017_7
Shams M, Ekinci M, Turan M, Dursun A, Kul R, Yildirim E (2019) Growth, nutrient uptake and enzyme activity response of Lettuce (Lactuca sativa L.) to excess copper. Environ Sustain 2:67–73. https://doi.org/10.1007/s42398-019-00051-7
Sharma A, Gontia I, Agarwal PK, Jah B (2010) Accumulation of heavy metals and its biochemical responses in Salicornia brachiata, an extreme halophyte. Mar Biol Res 6:511–518. https://doi.org/10.1080/17451000903434064
Shu S, Yuan R, Shen J, Chen J, Wang L, Wu J, Sun J, Wang Y, Shirong G (2019) The positive regulation of putrescine on light-harvesting complex ii and excitation energy dissipation in salt-stressed cucumber seedlings. Environ Exp Bot 162:283–294. https://doi.org/10.1016/j.envexpbot.2019.02.027
Song Y, Zhou L, Yang S, Wang C, Zhang T, Wang J (2017) Dose-dependent sensitivity of Arabidopsis thaliana seedling root to copper is regulated by auxin homeostasis. Environ Exp Bot 139:23–30. https://doi.org/10.1016/j.envexpbot.2017.04.003
Song B, Hao X, Wang X, Yang S, Dong Y, Ding Y, Wang Q, Wang X, Zhou J (2019) Boron stress inhibits beet (Beta vulgaris L.) growth through influencing endogenous hormones and oxidative stress response. Soil Sci Plant Nutr 65:346–352. https://doi.org/10.1080/00380768.2019.1617641
Souza AFC, Martins JPR, Gontijo ABPL, Falqueto AR (2019) Selenium improves the transport dynamics and energy conservation of the photosynthetic apparatus of in vitro grown Billbergia zebrina (Bromeliaceae). Photosynthetica 57:931–941. https://doi.org/10.32615/ps.2019.105
Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 321–362. https://doi.org/10.1007/978-1-4020-3218-9_12
Tewari RK, Kumar P, Sharma PN (2019) An effective antioxidant defense provides protection against zinc deficiency-induced oxidative stress in Zn-efficient maize plants. J Plant Nutr Soil Sci 182:701–707. https://doi.org/10.1002/jpln.201800622
Venkatesh J, Upadhyaya CP, Yu JW, Hemavathi A, Kim DH, Strasser RJ (2012) Chlorophyll a fluorescence transient analysis of transgenic potato overexpressing D-galacturonic acid reductase gene for salinity stress tolerance. Hort Environ Biotechnol 53:320–328. https://doi.org/10.1007/s13580-012-0035-1
Wafee C, Khan AS, Siddiqi MR (2018) Phytoremediation potential of Catharanthus roseus L. and effects of lead (Pb) toxicity on its morpho-anatomical features. Pak J Bot 50:1323–1326
Wang YW, Xu C, Lv CF, Wu M, Cai XJ, Liu ZT, Song MX, Chen CX, Lv CG (2016) Chlorophyll a fluorescence analysis of high-yield rice (Oryza sativa L.) LYPJ during leaf senescence. Photosynthetica 54:422–429. https://doi.org/10.1007/s11099-016-0185-y
Wilkins DA (1957) A technique for the measurement of lead tolerance in plants. Nature 180:37–38. https://doi.org/10.1038/180037b0
Yin Z, Lu J, Meng S, Liu Y, Mostafa I, Qi M, Li T (2019) Exogenous melatonin improves salt tolerance in tomato by regulating photosynthetic electron flux and the ascorbate–glutathione cycle. J Plant Interact 14:453–463. https://doi.org/10.1080/17429145.2019.1645895
Yoneyama T, Gosho T, Kato M, Goto S, Hayashi H (2010) Xylem and phloem transport of Cd, Zn and Fe into the grains of rice plants (Oryza sativa L.) grown in continuously fooded Cd-contaminated soil. Soil Sci Plant Nutr 56:445–453. https://doi.org/10.1111/j.1747-0765.2010.00481.x
Yuela I (2005) Cobre nas plantas. Braz J Plant Physiol 17:145–156
Xin J, Zhao XH, Tan QL, Sun XC, Zhao YY, Hu CX (2019) Effects of cadmium exposure on the growth, photosynthesis, and antioxidant defense system in two radish (Raphanus sativus L.) cultivars. Photosynthetica 57:967–973. https://doi.org/10.32615/ps.2019.076
Xu Y, Yu W, Ma Q, Zhou H, Jiang C (2017) Toxicity of sulfadiazine and copper and their interaction to wheat (Triticum aestivum L.) seedlings. Ecotoxicol Environ Saf 142:250–256. https://doi.org/10.1016/j.ecoenv.2017.04.007
Zhang L, Su F, Zhang C, Gong F, Liu J (2017a) Changes of photosynthetic behaviors and photoprotection during cell transformation and astaxanthin accumulation in Haematococcus pluvialis grown outdoors in tubular photobioreactors. Int J Mol Sci 18:1–14. https://doi.org/10.3390/ijms18010033
Zhang HH, Xu N, Li X, Jin WW, Tian Q, Sun GY, Gu SY (2017b) Overexpression of 2-Cys Prx increased salt tolerance of photosystem II (PSII) in tobacco. PeerJ Preprints 4:e2500v1. https://doi.org/10.7287/peerj.preprints.2500v1
Zhang HH, Xu N, Wu X, Wang J, Ma S, Li X, Sun G (2018) Effects of four types of sodium salt stress on plant growth and photosynthetic apparatus in sorghum leaves. J Plant Interact 13:506–513. https://doi.org/10.1080/17429145.2018.1526978
Acknowledgements
The authors would like to acknowledge the scholarship awarded by the CNPq (Brazilian National Council for Scientific and Technological Development), the CAPES (Coordination for the Improvement of Higher Education Personnel), and the FAPES (Espírito Santo State Research Foundation).
Author information
Authors and Affiliations
Contributions
JPRM, LLV and, LTC conducted experiments. JPRM and LCAR wrote the manuscript and, carried out the statistical analysis. ARF and ABPLG provided the structure and conditions to develop the experiments and contributed to the discussion of results. All the authors read and approved the final version of the paper.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Communicated by M. Paula Watt.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Martins, J.P.R., Vasconcelos, L.L., Braga, P.d.d. et al. Morphophysiological responses, bioaccumulation and tolerance of Alternanthera tenella Colla (Amaranthaceae) to excess copper under in vitro conditions. Plant Cell Tiss Organ Cult 143, 303–318 (2020). https://doi.org/10.1007/s11240-020-01917-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11240-020-01917-z