Abstract
We show how a couple of Ramanujan’s series for \(1/\pi \) can be deduced directly from Forsyth’s series and from Wallis’s product formula for \(\pi \). The same method is used to obtain Bauer’s alternating series.
Similar content being viewed by others
References
Bauer, G.: Von den Coefficienten der Reihen von Kugelfunctionen einer Variablen. J. Reine Angew. Math. 56, 101–121 (1859)
Ben-Ari, I., Hay, D., Roitershtein, A.: On Wallis-type products and Pólya’s urn schemes. Am. Math. Mon. 121(5), 422–432 (2014)
Baruah, N.D., Berndt, B.C., Chan, H.H.: Ramanujan’s series for \(1/\pi \): a survey. Am. Math. Mon. 116(7), 567–587 (2009)
Chu, W.: Dougall’s bilateral \( _2H_2\)-series and Ramanujan-like \(\pi \)-formulae. Math. Comp. 80, 2223–2251 (2011)
Dougall, J.: On Vandermonde’s theorem and some more general expansions. Proc. Edinb. Math. Soc. 25, 114–132 (1907)
Forsyth, A.R.: A Series for \(\frac{1}{\pi }\). Messenger Math. 12, 142–143 (1883)
Glaisher, J.W.L.: On series for \(\frac{1}{\pi }\) and \(\frac{1}{\pi ^2}\). Q. J. Pure Appl. Math. 37, 173–198 (1905–1906)
Guillera, J.: Series de Ramanujan: Generalizaciones y conjeturas. Ph.D. Thesis, University of Zaragoza, Spain (2007)
Guillera, J.: Accelerating Dougall’s \({}_5F_4\) sum and the WZ-algorithm. arXiv:1611.04385 (2016). Accessed 14 Mar 2017
Knopp, K.: Theory and Application of Infinite Series, 2nd edn. Blackie, London (1954). (4th reprint)
Levrie, P.: Using Fourier-Legendre expansions to derive series for \(1/\pi \) and \(1/\pi ^2\). Ramanujan J. 22(2), 221–230 (2010)
Liu, Z.-G.: A summation formula and Ramanujan type series. J. Math. Anal. Appl. 389(2), 1059–1065 (2012)
Liu, Z.-G.: Gauss summation and Ramanujan-type series for \(1/\pi \). Int. J. Number Theory 8(2), 289–297 (2012)
Nimbran, A.S.: Generalized Wallis-Euler products and new infinite products for \(\pi \). Math. Stud. 83(1–4), 155–164 (2014)
Nimbran, A.S.: Deriving Forsyth-Glaisher type series for \(\frac{1}{\pi }\) and Catalan’s constant by an elementary method. Math. Stud. 84(1–2), 69–86 (2015)
Ramanujan, S.: Modular equations and approximations to \(\frac{1}{\pi }\). Q. J. Pure Appl. Math. 45, 350–372 (1914). http://ramanujan.sirinudi.org/Volumes/published/ram06.pdf
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Levrie, P., Nimbran, A.S. From Wallis and Forsyth to Ramanujan. Ramanujan J 47, 533–545 (2018). https://doi.org/10.1007/s11139-017-9940-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11139-017-9940-3