[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Distinct UV-A or UV-B irradiation induces protochlorophyllide photoreduction and bleaching in dark-grown pea (Pisum sativum L.) epicotyls

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The effects of distinct UV-A and UV-B radiations were studied on etiolated pea (Pisum sativum L.) epicotyls. Emission spectra of the native protochlorophyll and protochlorophyllide forms were measured when epicotyls were excited with 360 or 300 nm light. The UV-A (360 nm) excited mainly the non-enzyme-bound monomers of protochlorophyll and protochlorophyllide and the UV-B (300 nm) excited preferentially the flash-photoactive protochlorophyllide complexes. These latter complexes converted into short- and long-wavelength chlorophyllide forms at 10-s illumination with both wavelength irradiations. As the spectral changes were very small, the effects of longer illumination periods were studied. Room temperature fluorescence emission spectra were measured from the same epicotyl spots before and after irradiation with various wavelengths between 280 and 360 nm for 15 min and the “illuminated” minus “dark” difference spectra were calculated. Both the UV-A and the UV-B irradiations caused photoreduction of protochlorophyllide into chlorophyllide. At 10 µmol photons m−2 s−1, the photoreduction rates were similar, however, at 60 µmol photons m−2 s−1, the UV-B irradiation was more effective in inducing chlorophyllide formation than the UV-A. The action spectra of protochlorophyllide plus protochlorophyll loss and chlorophyllide production showed that the radiation around 290 nm was the most effective in provoking protochlorophyllide photoreduction and the UV light above 320 nm caused strong bleaching. These results show that the effect of the UV radiation should be considered when discussing the protochlorophyllide–chlorophyllide photoreduction during germination and as a part of the regeneration of the photosynthetic apparatus proceeding in the daily run of photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Chlide:

Chlorophyllide

Chl:

Chlorophyll

Chl(ide):

Chlorophyll and chlorophyllide not distinguished

L-POR:

Light-dependent NADPH:protochlorophyllide-oxidoreductase enzyme

Pchlide:

Protochlorophyllide

Pchl:

Protochlorophyll

Pchl(ide):

Protochlorophyll and protochlorophyllide not distinguished

PAR:

Photosynthetically active radiation

PFD:

Photon flux density

References

  • Antosiewicz JM, Shugar D (2016) UV–Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications. Biophys Rev 8:163–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archipowa N, Kutta R, Heyes D, Scrutton N (2018) Stepwise hydride transfer in a biological system: insights into the reaction mechanism of the light-dependent protochlorophyllide oxidoreductase. Angew Chem 130:2712–2716

    Article  Google Scholar 

  • Belyaeva OB, Litvin FF (2014) Mechanisms of phototransformation of protochlorophyllide into chlorophyllide. Biochemistry 79:337–348

    CAS  PubMed  Google Scholar 

  • Björn LO (2018) Photoenzymes and related topics: an update. Photochem Photobiol 94:459–465

    Article  CAS  PubMed  Google Scholar 

  • Böddi B, Ryberg M, Sundqvist C (1992) Identification of four universal protochlorophyllide forms in dark-grown leaves by analyses of the 77K fluorescence emission spectra. J Photochem Photobiol B 12:389–401

    Article  Google Scholar 

  • Böddi B, Mc Ewen B, Ryberg M, Sundqvist C (1994) Protochlorophyllide forms in non-greening epicotyls of dark-grown pea (Pisum sativum). Physiol Plant 92:160–170

    Article  Google Scholar 

  • Böddi B, Evertsson I, Ryberg M, Sundqvist C (1996) Protochlorophyllide transformations and chlorophyll accumulation in epicotyls of pea (Pisum sativum). Physiol Plant 96:706–713

    Article  Google Scholar 

  • Böddi B, Kis-Petik K, Kaposi AD, Fidy J, Sundqvist C (1998) The two spectroscopically different short wavelength protochlorophyllide forms in pea epicotyls are both monomeric. BBA 1365:531–540

    PubMed  Google Scholar 

  • Böddi B, Loudèche R, Franck F (2005) Delayed chlorophyll accumulation and pigment photodestruction in the epicotyls of dark-grown pea (Pisum sativum). Physiol Plantarum 125:365–372

    Article  CAS  Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kevei E, Toth R (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633

    Article  CAS  PubMed  Google Scholar 

  • Eckhardt U, Grimm B, Hörtensteiner S (2004) Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol 56:1–14

    Article  CAS  PubMed  Google Scholar 

  • El Hamouri B, Brouers M, Sironval C (1981) Pathway from photoinactive p 633–628 protochlorophyllide to the p 696–682 chlorophyllide in cucumber etioplast suspension. Plant Sci Lett 21:375–379

    Article  Google Scholar 

  • Erdei N, Barta CS, Hideg E, Böddi B (2005) Light-induced wilting and its molecular mechanism in epicotyls of dark-germinated pea (Pisum sativum L.) seedlings. Plant Cell Physiol 46:185–191

    Article  CAS  PubMed  Google Scholar 

  • Erdei AL, Kósa A, Kovács-Smirová L, Böddi B (2016) Wavelength-dependent photooxidation and photoreduction of protochlorophyllide and protochlorophyll in the innermost leaves of cabbage (Brassica oleracea var. capitata L.). Photosynth Res 128:73–83

    Article  CAS  PubMed  Google Scholar 

  • Franck F, Inoue Y (1984) Light-driven reversible transformation of chlorophyllide P696, 682 into chlorophyllide P688, 678 in illuminated etiolated bean leaves. Photobioch Photobiop 8:85–96

    CAS  Google Scholar 

  • Franck F, Bereza B, Böddi B (1999) Protochlorophyllide-NADP+ and protochlorophyllide-NADPH complexes and their regeneration after flash illumination in leaves and etioplast membranes of dark-grown wheat. Photosynth Res 59:53–61

    Article  CAS  Google Scholar 

  • Franck F, Sperling U, Frick G, Pochert B, van Cleve B, Apel K, Armstrong GA (2000) Regulation of etioplast pigment-protein complexes, inner membrane architecture, and protochlorophyllide alpha chemical heterogeneity by light-dependent NADPH:protochlorophyllide oxidoreductases A and B. Plant Physiol 124:1678–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabruk M, Mysliwa-Kurdziel B (2015) Light-dependent protochlorophyllide oxidoreductase: phylogeny, regulation, and catalytic properties. Biochemistry 54:5255–5262

    Article  CAS  PubMed  Google Scholar 

  • Griffiths WT, Kay AS, Oliver RP (1985) The presence of photoregulation of protochlorophyllide reductase in green tissue. Plant Mol Biol 4:13–22

    Article  CAS  PubMed  Google Scholar 

  • Hectors K, Prinsen E, de Coen W, Jansen MAK (2007) Arabidopsis thaliana plants acclimated to low dose rates of ultraviolet B radiation show specific changes in morphology and gene expression in the absence of stress symptoms. New Phytol 175:255–270

    Article  CAS  PubMed  Google Scholar 

  • Herndon JM, Hoisington D, Whiteside M (2018) Deadly ultraviolet UV-C and UV-B penetration to Earth’s surface: human and environmental health implications. J Geog Environ Earth Sci Int 14:1–11

    Article  Google Scholar 

  • Heyes DJ, Hunter CN (2005) Making light work of enzyme catalysis: protochlorophyllide oxidoreductase. Trends Biochem Sci 30:642–649

    Article  CAS  PubMed  Google Scholar 

  • Hideg É, Vitányi B, Kósa A, Solymosi K, Bóka K, Won S, Inoue Y, Ridge R, Böddi B (2010) Reactive oxygen species from type-I photosensitized reactions contribute to the light-induced wilting of dark-grown pea (Pisum sativum) epicotyls. Physiol Plant 138:485–492

    Article  CAS  PubMed  Google Scholar 

  • Hideg É, Jansen MAK, Strid Å (2013) UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci 18:107–115

    Article  CAS  PubMed  Google Scholar 

  • Houssier C, Sauer K (1969) Optical properties of the protochlorophyll pigments II. Electronic absorption, fluorescence, and circular dichroism spectra. BBA 172:492–502

    CAS  PubMed  Google Scholar 

  • Jordan BR, James PE, Strid Å, Anthony RG (1994) The effect of ultraviolet-B radiation on gene expression and pigment composition in etiolated and green pea leaf tissue: UV-B induced changes are gene-specific and dependent upon the development stage. Plant Cell Environ 17:45–54

    Article  CAS  Google Scholar 

  • Juneau P, Eullaffroy P, Popovic R (1997) Evidence of UV-B effect on the photoconversion of active protochlorophyllides into chlorophyllides in etiolated barley leaves. Photochem Photobiol 65:564–569

    Article  CAS  Google Scholar 

  • Kerr JB, Fioletov VE (2008) Surface ultraviolet radiation. Atmos-Ocean 46:159–184

    Article  Google Scholar 

  • Kim C, Meskauskiene R, Apel K, Laloi C (2008) No single way to understand singlet oxygen signalling in plants. EMBO Rep 9(5):435–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kósa A, Böddi B (2012) Dominance of a 675 nm chlorophyll(ide) form upon selective 632.8 or 654 nm laser illumination after partial protochlorophyllide phototransformation. Photosynth Res 114:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kósa A, Márton Z, Böddi B (2005) Fast phototransformation of the 636 nm-emitting protochlorophyllide form in epicotyls of dark-grown pea (Pisum sativum). Physiol Plant 124:132–142

    Article  CAS  Google Scholar 

  • Kósa A, Márton ZS, Solymosi K, Bóka K, Böddi B (2006) Aggregation of the 636 nm emitting monomeric protochlorophyllide form into flash-photoactive, oligomeric 644 and 655 nm emitting forms in vitro. BBA 1757:811–820

    PubMed  Google Scholar 

  • Lebedev NN, Dujardin E (1993) Energy transfer from NADPH to protochlorophyllide in isolated protochlorophyllide holochrome as determined by fluorescence excitation spectropy. Z Naturforsch C 48:402–405

    Article  CAS  Google Scholar 

  • Lebedev N, Karginova O, McIvor W, Timko MP (2001) Tyr275 and Lys279 stabilize NADPH within the catalytic site of NADPH:protochlorophyllide oxidoreductase and are involved in the formation of the enzyme photoactive state. Biochemistry 40:12562–12574

    Article  CAS  PubMed  Google Scholar 

  • Mackerness SA-H, Jordan BR, Thomas B (1999) Reactive oxygen species in the regulation of photosynthetic genes by ultraviolet-B radiation (UV-B: 280–320 nm) in green and etiolated buds of pea (Pisum sativum) L. J Photochem Photobiol B 48:180–188

    Article  CAS  Google Scholar 

  • Marchand M, Dewez D, Franck F, Popovic R (2004) Protochlorophyllide phototransformation in the bundle sheath cells of Zea mays. J Photochem Photobiol B 75:73–80

    Article  CAS  PubMed  Google Scholar 

  • Marwood CA, Greenberg BM (1996) Effect of supplementary UVB radiation on chlorophyll synthesis and accumulation of photosystems during chloroplast development in Spirodela oligorrhiza. Photochem Photobiol 64:664–670

    Article  CAS  Google Scholar 

  • Menon BR, Hardman SJ, Scrutton NS, Heyes DJ (2016) Multiple active site residues are important for photochemical efficiency in the light-activated enzyme protochlorophyllide oxidoreductase (POR). J Photochem Photobiol B 161:236–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rassadina V, Domanskii V, Averina NG, Schoch S, Rüdiger W (2004) Correlation between chlorophyllide esterification, Shibata shift and regeneration of protochlorophyllide650 in flash-irradiated etiolated barley leaves. Physiol Plant 121:556–567

    Article  CAS  Google Scholar 

  • Schoefs B (2005) Protochlorophyllide reduction—what is new in 2005? Photosynthetica 43:329–343

    Article  CAS  Google Scholar 

  • Schoefs B, Franck F (2008) The photoenzymatic cycle of NADPH:protochlorophyllide oxidoreductase in primary bean leaves (Phaseolus vulgaris) during the first days of photoperiodic growth. Photosynth Res 96:15–26

    Article  CAS  PubMed  Google Scholar 

  • Shibata K (1957) Spectroscopic studies on chlorophyll formation in intact leaves. J Biochem 44:147–173

    Article  CAS  Google Scholar 

  • Skribanek A, Apatini D, Inaoka M, Böddi B (2000) Protochlorophyllide and chlorophyll forms in dark-grown stems and stem-related organs. J Photochem Photobiol B 55:172–177

    Article  CAS  PubMed  Google Scholar 

  • Solymosi K, Martinez K, Kristóf Z, Sundqvist C, Böddi B (2004) Plastid differentiation and chlorophyll biosynthesis in different leaf layers of white cabbage (Brassica oleracea cv. capitata). Physiol Plant 121:520–529

    Article  CAS  Google Scholar 

  • Spano AJ, He Z, Michel H, Hunt DF, Timko MP (1992) Molecular cloning, nuclear gene structure, and developmental expression of NADPH:protochlorophyllide oxidoreductase in pea (Pisum sativum L.). Plant Mol Biol 18:967–972

    Article  CAS  PubMed  Google Scholar 

  • Strid Å, Porra RJ (1992) Alterations in pigment content in leaves of Pisum sativum after exposure to supplementary UV-B. Plant Cell Physiol 33:1015–1023

    CAS  Google Scholar 

  • Surabhi GK, Reddy KR, Singh SK (2009) Photosynthesis, fluorescence, shoot biomass and seed weight responses of three cowpea (Vigna unguiculata (L.) Walp.) cultivars with contrasting sensitivity to UV-B radiation. Environ Exp Bot 66:160–171

    Article  CAS  Google Scholar 

  • Szenzenstein A, Kósa A, Solymosi K, Sárvári É, Böddi B (2010) Preferential regeneration of the NADPH:protochlorophyllide oxidoreductase oligomer complexes in pea epicotyls after bleaching. Physiol Plant 138:102–112

    Article  CAS  PubMed  Google Scholar 

  • Vitányi B, Kósa A, Solymosi K, Böddi B (2013) Etioplasts with protochlorophyll and protochlorophyllide forms in the under-soil epicotyl segments of pea (Pisum sativum) seedlings grown under natural light conditions. Physiol Plant 148:307–315

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Frei M (2011) Stressed food—the impact of abiotic environmental stresses on crop quality. Agric Ecosyst Environ 141:271–286

    Article  Google Scholar 

  • Wilks HM, Timko MP (1995) A light-dependent complementation system for analysis of NADPH:protochlorophyllide oxidoreductase: identification and mutagenesis of two conserved residues that are essential for enzyme activity. Proc Natl Acad Sci USA 92:724–728

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Éva Hideg and Gyula Czégény (University of Pécs, Hungary) for their contribution to the UV photon flux density measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béla Böddi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 272 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdei, A.L., Kósa, A. & Böddi, B. Distinct UV-A or UV-B irradiation induces protochlorophyllide photoreduction and bleaching in dark-grown pea (Pisum sativum L.) epicotyls. Photosynth Res 140, 93–102 (2019). https://doi.org/10.1007/s11120-018-0584-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-018-0584-y

Keywords

Navigation