[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Compact eight-channel wavelength demultiplexer using modified photonic crystal ring resonators for CWDM applications

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

An eight-channel wavelength demultiplexer by cascading of ring resonators (RRs) in photonic crystal (PhC) structure is proposed in this paper. In designing of this demultiplexer, we used eight square-shaped PhC RRs with different refractive index (RI) of defect rods to generate a distinctive resonance wavelength. Each PhC RR has a specific resonance wavelength with tuning a variety of design parameters such as RI of a whole, defect and inner rods and radius of defect rods. In operating wavelength of λ0 = 1497 nm, the transmission power and quality factor (Q) of single RR are discovered as 96% and 1000, respectively. The average power transmission, channel spacing, crosstalk and full width at half maximum are found by finite difference time domain method to be about 96 ± 1%, 2.25 nm, − 35 dB and 1.5 nm, respectively. Simulation outcomes demonstrate that the designed demultiplexer has a proper operation. The footprint of the designed device is about ~ 115 μm2, which makes this device a promising for future photonic integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dutta, A.K., Dutta, N.K., Fujiwara, M.: WDM Technologies: Optical Networks, vol. III. Elsevier Academic Press, Cambridge (2004)

    Book  Google Scholar 

  2. DeCusatis, C., Maass, E., Clement, D.P., Lasky, R.C. (eds.): Handbook of Fiber Optic Data Communication. Academic Press, San Diego (1998)

    Google Scholar 

  3. Dutton, H.J.R.: Understanding Optical Communications. IBM Corporation, Armonk (1998)

    Google Scholar 

  4. Rakhshani, M.R., Mansouri-Birjandi, M.A.: A high-sensitivity sensor based on three-dimensional metal–insulator–metal racetrack resonator and application for hemoglobin detection. Photonics Nanostruct. Fundam. Appl. 32, 28–34 (2018)

    Article  Google Scholar 

  5. Wu, C.T., Huang, C.C., Lee, Y.C.: Plasmonic wavelength demultiplexer with a ring resonator using high-order resonant modes. Appl. Opt. 56, 4039–4044 (2017)

    Article  Google Scholar 

  6. Rakhshani, M.R., Mansouri-Birjandi, M.A.: Engineering hexagonal array of nanoholes for high sensitivity biosensor and application for human blood group detection. IEEE Trans. Nanotechnol. 17, 475–481 (2018)

    Article  Google Scholar 

  7. Rakhshani, M.R., Mansouri-Birjandi, M.A.: High sensitivity plasmonic refractive index sensing and its application for human blood group identification. Sens. Actuators B Chem. 249, 168–176 (2017)

    Article  Google Scholar 

  8. Fallahi, V., Seifouri, M., Mohammadi, M.: A new design of optical add/drop filters and multi-channel filters based on hexagonal PhCRR for WDM systems. Photonic Netw. Commun. 37, 100–109 (2019)

    Article  Google Scholar 

  9. Mohammadi, B., Soroosh, M., Kovsarian, A., Kavian, Y.S.: Improving the transmission efficiency in eight-channel all optical demultiplexers. Photonic Netw Commun 38, 115–120 (2019)

    Article  Google Scholar 

  10. Divya, J., Selvendran, S., Raja, A.S.: Two-dimensional photonic crystal ring resonator-based channel drop filter for CWDM application. Photonic Netw. Commun. 35, 353–363 (2018)

    Article  Google Scholar 

  11. Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and optimization of photonic crystal triplexer for optical networks. Int. J. Comput. Sci. Issues 9, 24–29 (2012)

    Google Scholar 

  12. Tanaka, H., Takai, I., Fujikawa, H., Iizuka, H.: Nearly polarization-independent angular filters consisting of one-dimensional photonic crystals realized in the visible region. J. Lightwave Technol. 36, 2517–2523 (2018)

    Article  Google Scholar 

  13. Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and simulation of four-channel wavelength demultiplexer based on photonic crystal circular ring resonators for optical communications. J. Opt. Commun. 35, 9–15 (2014)

    Article  Google Scholar 

  14. Geravand, A., Danaie, M., Mohammadi, S.: All-optical photonic crystal memory cells based on cavities with a dual-argument hysteresis feature. Opt. Commun. 430, 323–335 (2019)

    Article  Google Scholar 

  15. Rakhshani, M.R., Mansouri-Birjandi, M.A.: Realization of tunable optical filter by photonic crystal ring resonators. Optik 124, 5377–5380 (2013)

    Article  Google Scholar 

  16. Okayama, H., Onawa, Y., Shimura, D., Takahashi, H., Yaegashi, H., Sasaki, H.: Wavelength filter using twin one-dimensional photonic crystal cavity silicon waveguides. Electron. Lett. 55, 164 (2019)

    Google Scholar 

  17. haq Shaik, E., Rangaswamy, N.: Multi-mode interference-based photonic crystal logic gates with simple structure and improved contrast ratio. Photonic Netw. Commun. 34, 140–148 (2017)

    Article  Google Scholar 

  18. Cheraghi, F., Soroosh, M., Akbarizadeh, G.: An ultra-compact all optical full adder based on nonlinear photonic crystal resonant cavities. Superlattices Microstruct. 113, 359–365 (2018)

    Article  Google Scholar 

  19. Djavid, M., Dastjerdi, M.H.T., Philip, M.R., Choudhary, D.D., Pham, T.T., Khreishah, A., Nguyen, H.P.T.: Photonic crystal-based permutation switch for optical networks. Photonic Netw. Commun. 35, 90–96 (2018)

    Article  Google Scholar 

  20. Vigneswaran, D., Ayyanar, N., Sharma, M., Sumathi, M., Rajan, M., Porsezian, K.: Salinity sensor using photonic crystal fiber. Sens. Actuators A Phys. 269, 22–28 (2018)

    Article  Google Scholar 

  21. Pitruzzello, G., Krauss, T.F.: Photonic crystal resonances for sensing and imaging. J. Opt. 20, 073004 (2018)

    Article  Google Scholar 

  22. Absalan, H.: A four-channel optical demultiplexer using photonic crystal-based resonant cavities. J. Opt. Commun. 39, 369–373 (2018)

    Article  Google Scholar 

  23. Zhuang, Y., Chen, H., Ji, K., Hu, Y.: On-chip hybrid demultiplexer for mode and coarse wavelength division multiplexing. Appl. Phys. B 125, 12 (2019)

    Article  Google Scholar 

  24. Zhuang, Y., Ji, K., Zhou, W., Chen, H.: Design of a DWDM multi/demultiplexer based on 2-D photonic crystals. IEEE Photonics Technol. Lett. 28, 1669–1672 (2016)

    Article  Google Scholar 

  25. Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: Optical wavelength demultiplexer based on photonic crystal ring resonators. Photonic Netw. Commun. 29, 146–150 (2015)

    Article  Google Scholar 

  26. Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E Low-Dimens. Syst. Nanostruct. 50, 97–101 (2013)

    Article  Google Scholar 

  27. Mansouri-Birjandi, M.A., Rakhshani, M.R.: A new design of tunable four-port wavelength demultiplexer by photonic crystal ring resonators. Optik 124, 5923–5926 (2013)

    Article  Google Scholar 

  28. Rakhshani, M.R., Mansouri-Birjandi, M.A.: Heterostructure four channel wavelength demultiplexer using square photonic crystals ring resonators. J. Electromagn. Waves Appl. 26, 1700–1707 (2012)

    Article  Google Scholar 

  29. Granpayeh, A., Habibiyan, H., Parvin, P.: Photonic crystal directional coupler for all-optical switching, tunable multi/demultiplexing and beam splitting applications. J. Mod. Opt. 66, 359–366 (2019)

    Article  Google Scholar 

  30. Bernier, D., Le Roux, X., Lupu, A., Marris-Morini, D., Vivien, L., Cassan, E.: Compact, low cross-talk CWDM demultiplexer using photonic crystal superprism. Opt. Express 16, 17209–17214 (2008)

    Article  Google Scholar 

  31. Momeni, B., Huang, J., Soltani, M., Askari, M., Mohammadi, S., Rakhshandehroo, M., Adibi, A.: Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms. Opt. Express 14, 2413–2422 (2006)

    Article  Google Scholar 

  32. Rawal, S., Sinha, R.K.: Design, analysis and optimization of silicon-on-insulator photonic crystal dual band wavelength demultiplexer. Opt. Commun. 282, 3889–3894 (2009)

    Article  Google Scholar 

  33. Rakhshani, M.R., Tavousi, A., Mansouri-Birjandi, M.A.: Design of a plasmonic sensor based on a square array of nanorods and two slot cavities with a high figure of merit for glucose concentration monitoring. Appl. Opt. 57, 7798–7804 (2018)

    Article  Google Scholar 

  34. Agrawal, G.P.: Optical communication: its history and recent progress. In: Al-Amri M., El-Gomati M., Zubairy M. (eds.) Optics in Our Time, pp. 177–199. Springer, Cham (2016)

    Chapter  Google Scholar 

  35. Yasumoto, K.: Electromagnetic Theory and Applications for Photonic Crystals. CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  36. Piper, J.R., Fan, S.: Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photonics 1, 347–353 (2014)

    Article  Google Scholar 

  37. Yu, C.P., Chang, H.C.: Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers. Opt. Express 12, 6165–6177 (2004)

    Article  Google Scholar 

  38. Rostami, A., Nazari, F., Banaei, H.A., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonics Nanostruct. Fundam. Appl. 8, 14–22 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by University of Zabol Grant No. UOZ-GR-9618-171.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Rakhshani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhshani, M.R. Compact eight-channel wavelength demultiplexer using modified photonic crystal ring resonators for CWDM applications. Photon Netw Commun 39, 143–151 (2020). https://doi.org/10.1007/s11107-020-00879-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-020-00879-8

Keywords

Navigation