[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Diclofenac Loaded Lipid Nanovesicles Prepared by Double Solvent Displacement for Skin Drug Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Herein, we detail a promising strategy of nanovesicle preparation based on control of phospholipid self-assembly: the Double Solvent Displacement. A systematic study was conducted and diclofenac as drug model encapsulated. In vitro skin studies were carried out to identify better formulation for dermal/transdermal delivery.

Methods

This method consists in two solvent displacements. The first one, made in a free water environment, has allowed triggering a phospholipid pre-organization. The second one, based on the diffusion into an aqueous phase has led to liposome formation.

Results

Homogeneous liposomes were obtained with a size close to 100 nm and a negative zeta potential around -40 mV. After incorporation of acid diclofenac, we obtained nanoliposomes with a size between 101 ± 45 and 133 ± 66 nm, a zeta potential between 34 ± 2 and 49 ± 3 mV, and the encapsulation efficiency (EE%) was between 58 ± 3 and 87 ± 5%. In vitro permeation studies showed that formulation with higher EE% dispayed the higher transdermal passage (18,4% of the applied dose) especially targeting dermis and beyond.

Conclusions

Our results suggest that our diclofenac loaded lipid vesicles have significant potential as transdermal skin drug delivery system. Here, we produced cost effective lipid nanovesicles in a merely manner according to a process easily transposable to industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

CR:

Compartment Receptor

EE%:

Encapsulation efficiency

HPLC:

High-performance liquid chromatography

ISDDS:

Innovative skin drug delivery systems

LNC:

Lipid nanocapsules

MLV:

Multilamellar vesicles

NLC:

Nanostructured lipid carriers

NLS:

Solid lipid nanoparticles

OLV:

Oligolamellar vesicles

PCL:

Polycaprolactone

PCS:

Photon correlation spectroscopy

PDI:

Polydispersity Index

PEG 400:

Polyethylene glycol 400

PLA:

Poly (lactic acid)

PLGA:

poly(Lactic-co-glycolic acid)

rpm:

Rotation per minute

SC:

Stratum Corneum

SD:

Standard Deviation

SEM:

Standard Error Mean

TEM:

Transmission electron microscope

ULV:

Unilamellar vesicles

References

  1. Baron JM, Merk HF. Drug metabolism in the skin. Curr Opin Allergy Clin Immunol. 2001;1:287–91.

    Article  CAS  PubMed  Google Scholar 

  2. Afshar M, Gallo RL. Innate immune defense system of the skin. Vet Dermatol. 2013;24:32–e9.

    Article  PubMed  Google Scholar 

  3. Badri W, Eddabra R, Fessi H, Elaissari A. Biodegradable polymer based nanoparticles: dermal and transdermal drug delivery. J. Colloid Sci. Biotechnol. 2014;3:141–9.

    Article  CAS  Google Scholar 

  4. Hasanovic A, Zehl M, Reznicek G, Valenta C. Chitosan-tripolyphosphate nanoparticles as a possible skin drug delivery system for aciclovir with enhanced stability. J Pharm Pharmacol. 2009;61:1609–16.

    Article  CAS  PubMed  Google Scholar 

  5. Sahoo N, Sahoo RK, Biswas N, Guha A, Kuotsu K. Recent advancement of gelatin nanoparticles in drug and vaccine delivery. Int J Biol Macromol. 2015;81:317–31.

    Article  CAS  PubMed  Google Scholar 

  6. Pamornpathomkul B, Duangjit S, Laohapatarapant S, Rojanarata T, Opanasopit P, Ngawhirunpat T. Transdermal delivery of fluorescein isothiocyanate-dextrans using the combination of microneedles and low-frequency sonophoresis. Asian J Pharm Sci. 2015;10:415–24.

    Article  Google Scholar 

  7. Lira AAM, Cordo PL, Nogueira EC, Almeida EDP, Junior RAL, Nunes RS, et al. Optimization of topical all-trans retinoic acid penetration using poly-DL-lactide and poly-DL-lactide-co-glycolide microparticles. J Colloid Sci Biotechnol. 2013;2:123–9.

    Article  CAS  Google Scholar 

  8. Rancan F, Papakostas D, Hadam S, Hackbarth S, Delair T, Primard C, et al. Investigation of polylactic acid (PLA) nanoparticles as drug delivery systems for local dermatotherapy. Pharm Res. 2009;26:2027–36.

    Article  CAS  PubMed  Google Scholar 

  9. Mondal D, Griffith M, Venkatraman SS. Polycaprolactone-based biomaterials for tissue engineering and drug delivery: current scenario and challenges. Int J Polym Mater Polym Biomater. 2016;65:255–65.

    Article  CAS  Google Scholar 

  10. Zhai Y, Zhai G. Advances in lipid-based colloid systems as drug carrier for topic delivery. J Control Release. 2014;193:90–9.

    Article  CAS  PubMed  Google Scholar 

  11. Pierre MBR. Costa I dos SM. Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch Dermatol Res. 2011;303:607–21.

    Article  CAS  PubMed  Google Scholar 

  12. Weber J, Funk NL, Motta MH, Guedes AM, Visintainer APC, Tedesco SB, et al. Association of borage oil and betamethasone Dipropionate in lipid-Core Nanocapsules: characterization, Photostability and in vitro irritation test. J Nanosci Nanotechnol. 2016;16:1354–62.

    Article  CAS  PubMed  Google Scholar 

  13. Dasgupta S, Ghosh SK, Ray S, Mazumder B. Solid lipid nanoparticles (SLNs) gels for topical delivery of aceclofenac in vitro and in vivo evaluation. Curr Drug Deliv. 2013;10:656–66.

    Article  CAS  PubMed  Google Scholar 

  14. Vadlamudi HC, Narendran H, Nagaswaram T, Yaga G, Thanniru J, Yalavarthi PR. Microemulsions based transdermal drug delivery systems. Curr Drug Discov Technol 2014;11:169–180.

  15. Kamble MS, Vaidya KK, Bhosale AV, Nanjwade BK, Shinde SA, Chaudhari PD. Formulation and evaluation of meloxicam nanostructured lipid carrier. J Colloid Sci Biotechnol. 2014;3:167–72.

    Article  CAS  Google Scholar 

  16. Paudel KS, Milewski M, Swadley CL, Brogden NK, Ghosh P, Stinchcomb AL. Challenges and opportunities in dermal/transdermal delivery. Ther Deliv. 2010;1:109–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Laouini A, Jaafar-Maalej C, Limayem-Blouza I, Sfar S, Charcosset C, Fessi H. Preparation, characterization and applications of liposomes: state of the art. J Colloid Sci Biotechnol. 2012;1:147–68.

    Article  CAS  Google Scholar 

  18. Verma DD, Fahr A. Synergistic penetration enhancement effect of ethanol and phospholipids on the topical delivery of cyclosporin a. J Control Release. 2004;97:55–66.

    Article  CAS  PubMed  Google Scholar 

  19. Gillet A, Compère P, Lecomte F, Hubert P, Ducat E, Evrard B, et al. Liposome surface charge influence on skin penetration behaviour. Int J Pharm. 2011;411:223–31.

    Article  CAS  PubMed  Google Scholar 

  20. Romero EL, Morilla MJ. Highly deformable and highly fluid vesicles as potential drug delivery systems: theoretical and practical considerations. Int J Nanomedicine. 2013;8:3171–86.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dragicevic N, Maibach HI, et al. Percutaneous penetration enhancers chemical methods in penetration enhancement. Nanocarriers (Internet). http://link.springer.com/content/pdf/10.1007/978-3-662-47039-8.pdf (2016). Accessed 18 Jan 2017.

  22. Mora-Huertas CE, Garrigues O, Fessi H, Elaissari A. Nanocapsules prepared via nanoprecipitation and emulsification–diffusion methods: comparative study. Eur J Pharm Biopharm. 2012;80:235–9.

    Article  CAS  PubMed  Google Scholar 

  23. Manca ML, Zaru M, Manconi M, Lai F, Valenti D, Sinico C, et al. Glycerosomes: a new tool for effective dermal and transdermal drug delivery. Int J Pharm. 2013;455:66–74.

    Article  CAS  PubMed  Google Scholar 

  24. Sze A, Erickson D, Ren L, Li D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow. J Colloid Interface Sci. 2003;261:402–10.

  25. Thong H-Y, Zhai H, Maibach HI. Percutaneous penetration enhancers: an overview. Skin Pharmacol Physiol. 2007;20:272–82.

    Article  PubMed  Google Scholar 

  26. Caddeo C, Manconi M, Sinico C, Valenti D, Celia C, Monduzzi M, et al. Penetration enhancer-containing vesicles: does the penetration enhancer structure affect topical drug delivery? Curr Drug Targets. 2015;16:1438–47.

    Article  CAS  PubMed  Google Scholar 

  27. Manca ML, Castangia I, Matricardi P, Lampis S, Fernàndez-Busquets X, Fadda AM, et al. Molecular arrangements and interconnected bilayer formation induced by alcohol or polyalcohol in phospholipid vesicles. Colloids Surf B Biointerfaces. 2014;117:360–7.

    Article  CAS  PubMed  Google Scholar 

  28. Freeman S, Quillin K, Allison L. Biological science. 5th ed. Boston: Pearson; 2013.

  29. Lambers H, Piessens S, Bloem A, Pronk H, Finkel P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int J Cosmet Sci. 2006;28:359–70.

    Article  CAS  PubMed  Google Scholar 

  30. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13:238–IN27.

    Article  CAS  PubMed  Google Scholar 

  31. Phillips MC, Williams RM, Chapman D. On the nature of hydrocarbon chain motions in lipid liquid crystals. Chem Phys Lipids. 1969;3:234–44.

    Article  CAS  Google Scholar 

  32. Koynova R, Caffrey M. Phases and phase transitions of the phosphatidylcholines. Biochim Biophys Acta Rev Biomembr. 1998;1376:91–145.

    Article  CAS  Google Scholar 

  33. Blok MC, Van Deenen LLM, De Gier J. Effect of the gel to liquid crystalline phase transition on the osmotic behaviour of phosphatidycholine liposomes. Biochim Biophys Acta Biomembr. 1976;433:1–12.

    Article  CAS  Google Scholar 

  34. Szoka F Jr, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng. 1980;9:467–508.

    Article  CAS  PubMed  Google Scholar 

  35. Frézard F, Schettini DA, Rocha OG, Demicheli C. Lipossomas: propriedades físico-químicas e farmacológicas, aplicações na quimioterapia à base de antimônio. Quim Nova. 2005;28:511–8.

    Article  Google Scholar 

  36. Collier JH, Messersmith PB. Phospholipid strategies in biomineralization and biomaterials research. Annu Rev Mater Res. 2001;31:237–63.

    Article  CAS  Google Scholar 

  37. Du Plessis J, Egbaria K, Ramachandran C, Weiner N. Topical delivery of liposomally encapsulated gamma-interferon. Antivir Res. 1992;18:259–65.

    Article  PubMed  Google Scholar 

  38. Lu GW, Valiveti S, Spence J, Zhuang C, Robosky L, Wade K, et al. Comparison of artificial sebum with human and hamster sebum samples. Int J Pharm. 2009;367:37–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Elaissari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sala, M., Locher, F., Bonvallet, M. et al. Diclofenac Loaded Lipid Nanovesicles Prepared by Double Solvent Displacement for Skin Drug Delivery. Pharm Res 34, 1908–1924 (2017). https://doi.org/10.1007/s11095-017-2201-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2201-8

Key words

Navigation