[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Algorithms for the CMRH method for dense linear systems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The CMRH (Changing Minimal Residual method based on the Hessenberg process) method is a Krylov subspace method for solving large linear systems with non-symmetric coefficient matrices. CMRH generates a (non orthogonal) basis of the Krylov subspace through the Hessenberg process, and minimizes a quasi-residual norm. On dense matrices, the CMRH method is less expensive and requires less storage than other Krylov methods. In this work, we describe Matlab codes for the best of these implementations. Fortran codes for sequential and parallel implementations are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alia, A., Sadok, H., Souli, M.: CMRH method as iterative solver for boundary element acoustic systems. Eng. Anal. Bound. Elem. 36, 346–350 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Davis, T.A., Hu, Y.: The University of Florida matrix collection. ACM T. Math. Software, 38 (2011). http://www.cise.ufl.edu/research/sparse/matrices

  3. Duminil, S.: A parallel implementation of the CMRH method for dense linear systems. Numer. Alg. 63, 127–142 (2012)

    Article  MathSciNet  Google Scholar 

  4. Hansen, P.C.: Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems. Numer. Alg. 6, 1–35 (1994)

    Article  MATH  Google Scholar 

  5. Heyouni, M., Sadok, H.: On a variable smoothing procedure for Krylov subspace methods. Linear Algebra Appl. 268(1), 131–149 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Heyouni, M.: The global Hessenberg and CMRH methods for linear systems with multiple right-hand sides. Numer. Alg. 26, 317–332 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Heyouni, M., Sadok, H.: A new implementation of the CMRH method for solving dense linear systems. J. Comp. Appl. Math. 213, 387–399 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Helsing, J.: Approximate inverse preconditioners for some large dense random electrostatic interaction matrices. BIT Numer. Math. 46, 307–323 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Matrix Market: http://math.nist.gov/MatrixMarket/data/, Test Matrices Database Maintained by NIST, Gaithersburg, MD.

  10. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comp. 7, 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia (2003)

  12. Sadok, H.: CMRH: a new method for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm. Numer. Algorithms 20, 303–321 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sadok, H., Szyld, D.B.: A new look at CMRH and its relation to GMRES. BIT Numer. Math. 52, 485–501 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassane Sadok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duminil, S., Heyouni, M., Marion, P. et al. Algorithms for the CMRH method for dense linear systems. Numer Algor 71, 383–394 (2016). https://doi.org/10.1007/s11075-015-9997-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-9997-2

Keywords

Navigation